Sophie

Sophie

distrib > Fedora > 14 > x86_64 > by-pkgid > 39da2e642be5eb48375f19991c31eb2c > files > 622

cppad-doc-20100101.4-1.fc14.noarch.rpm

<?xml version='1.0'?>
<?xml-stylesheet type='text/xsl' href='pmathml.xsl'?>
<html xmlns='http://www.w3.org/1999/xhtml'>
<head>
<title>Invert an LU Factored Equation</title>
<meta name="description" id="description" content="Invert an LU Factored Equation"/>
<meta name="keywords" id="keywords" content=" Luinvert linear invert Lu equation "/>
<style type='text/css'>
body { color : black }
body { background-color : white }
A:link { color : blue }
A:visited { color : purple }
A:active { color : purple }
</style>
<script type='text/javascript' language='JavaScript' src='_luinvert_xml.js'>
</script>
</head>
<body>
<table><tr>
<td>
<a href="http://www.coin-or.org/CppAD/" target="_top"><img border="0" src="_image.gif"/></a>
</td>
<td><a href="lu_factor.hpp.xml" target="_top">Prev</a>
</td><td><a href="luinvert.cpp.xml" target="_top">Next</a>
</td><td>
<select onchange='choose_across0(this)'>
<option>Index-&gt;</option>
<option>contents</option>
<option>reference</option>
<option>index</option>
<option>search</option>
<option>external</option>
</select>
</td>
<td>
<select onchange='choose_up0(this)'>
<option>Up-&gt;</option>
<option>CppAD</option>
<option>library</option>
<option>LuDetAndSolve</option>
<option>LuInvert</option>
</select>
</td>
<td>
<select onchange='choose_down3(this)'>
<option>CppAD-&gt;</option>
<option>Install</option>
<option>Introduction</option>
<option>AD</option>
<option>ADFun</option>
<option>library</option>
<option>Example</option>
<option>configure</option>
<option>Appendix</option>
</select>
</td>
<td>
<select onchange='choose_down2(this)'>
<option>library-&gt;</option>
<option>ErrorHandler</option>
<option>NearEqual</option>
<option>speed_test</option>
<option>SpeedTest</option>
<option>NumericType</option>
<option>CheckNumericType</option>
<option>SimpleVector</option>
<option>CheckSimpleVector</option>
<option>nan</option>
<option>pow_int</option>
<option>Poly</option>
<option>LuDetAndSolve</option>
<option>RombergOne</option>
<option>RombergMul</option>
<option>Runge45</option>
<option>Rosen34</option>
<option>OdeErrControl</option>
<option>OdeGear</option>
<option>OdeGearControl</option>
<option>BenderQuad</option>
<option>LuRatio</option>
<option>std_math_unary</option>
<option>CppAD_vector</option>
<option>TrackNewDel</option>
</select>
</td>
<td>
<select onchange='choose_down1(this)'>
<option>LuDetAndSolve-&gt;</option>
<option>LuSolve</option>
<option>LuFactor</option>
<option>LuInvert</option>
</select>
</td>
<td>
<select onchange='choose_down0(this)'>
<option>LuInvert-&gt;</option>
<option>LuInvert.cpp</option>
<option>lu_invert.hpp</option>
</select>
</td>
<td>
<select onchange='choose_current0(this)'>
<option>Headings-&gt;</option>
<option>Syntax</option>
<option>Description</option>
<option>Include</option>
<option>Matrix Storage</option>
<option>ip</option>
<option>jp</option>
<option>LU</option>
<option>---..L</option>
<option>---..U</option>
<option>---..P</option>
<option>---..A</option>
<option>X</option>
<option>Example</option>
<option>Source</option>
</select>
</td>
</tr></table><br/>








<center><b><big><big>Invert an LU Factored Equation</big></big></b></center>
<code><span style='white-space: nowrap'><br/>
</span></code><b><big><a name="Syntax" id="Syntax">Syntax</a></big></b>
 <code><font color="blue"><br/>
# include &lt;cppad/lu_invert.hpp&gt;</font></code>
<code><span style='white-space: nowrap'><br/>
</span></code><code><font color="blue"><span style='white-space: nowrap'>LuInvert(</span></font></code><i><span style='white-space: nowrap'>ip</span></i><code><font color="blue"><span style='white-space: nowrap'>,&#xA0;</span></font></code><i><span style='white-space: nowrap'>jp</span></i><code><font color="blue"><span style='white-space: nowrap'>,&#xA0;</span></font></code><i><span style='white-space: nowrap'>LU</span></i><code><font color="blue"><span style='white-space: nowrap'>,&#xA0;</span></font></code><i><span style='white-space: nowrap'>X</span></i><code><font color="blue"><span style='white-space: nowrap'>)</span></font></code>


<br/>
<br/>
<b><big><a name="Description" id="Description">Description</a></big></b>
<br/>
Solves the matrix equation <code><font color="blue"></font></code><i><span style='white-space: nowrap'>A</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;*&#xA0;</span></font></code><i><span style='white-space: nowrap'>X</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;=&#xA0;</span></font></code><i><span style='white-space: nowrap'>B</span></i> 
using an LU factorization computed by <a href="lufactor.xml" target="_top"><span style='white-space: nowrap'>LuFactor</span></a>
.

<br/>
<br/>
<b><big><a name="Include" id="Include">Include</a></big></b>
<br/>
The file <code><font color="blue">cppad/lu_invert.hpp</font></code> is included by <code><font color="blue">cppad/cppad.hpp</font></code>
but it can also be included separately with out the rest of 
the <code><font color="blue">CppAD</font></code> routines.

<br/>
<br/>
<b><big><a name="Matrix Storage" id="Matrix Storage">Matrix Storage</a></big></b>
<br/>
All matrices are stored in row major order.
To be specific, if 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>Y</mi>
</mrow></math>

 is a vector
that contains a 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>p</mi>
</mrow></math>

 by 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>q</mi>
</mrow></math>

 matrix,
the size of 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>Y</mi>
</mrow></math>

 must be equal to 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>p</mi>
<mo stretchy="false">*</mo>
<mi mathvariant='italic'>q</mi>
</mrow></math>

 and for

<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>i</mi>
<mo stretchy="false">=</mo>
<mn>0</mn>
<mo stretchy="false">,</mo>
<mo stretchy="false">&#x02026;</mo>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>p</mi>
<mn>-1</mn>
</mrow></math>

,

<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>j</mi>
<mo stretchy="false">=</mo>
<mn>0</mn>
<mo stretchy="false">,</mo>
<mo stretchy="false">&#x02026;</mo>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>q</mi>
<mn>-1</mn>
</mrow></math>

,

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow>
<msub><mi mathvariant='italic'>Y</mi>
<mrow><mi mathvariant='italic'>i</mi>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>j</mi>
</mrow>
</msub>
<mo stretchy="false">=</mo>
<mi mathvariant='italic'>Y</mi>
<mo stretchy="false">[</mo>
<mi mathvariant='italic'>i</mi>
<mo stretchy="false">*</mo>
<mi mathvariant='italic'>q</mi>
<mo stretchy="false">+</mo>
<mi mathvariant='italic'>j</mi>
<mo stretchy="false">]</mo>
</mrow></math>

<br/>
<b><big><a name="ip" id="ip">ip</a></big></b>
<br/>
The argument <i>ip</i> has prototype
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;const&#xA0;</span></font></code><i><span style='white-space: nowrap'>SizeVector</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;&amp;</span></font></code><i><span style='white-space: nowrap'>ip</span></i><code><font color="blue"><span style='white-space: nowrap'><br/>
</span></font></code>(see description for <i>SizeVector</i> in
<a href="lufactor.xml#SizeVector" target="_top"><span style='white-space: nowrap'>LuFactor</span></a>
 specifications).
The size of <i>ip</i> is referred to as <i>n</i> in the
specifications below.
The elements of <i>ip</i> determine
the order of the rows in the permuted matrix.

<br/>
<br/>
<b><big><a name="jp" id="jp">jp</a></big></b>
<br/>
The argument <i>jp</i> has prototype
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;const&#xA0;</span></font></code><i><span style='white-space: nowrap'>SizeVector</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;&amp;</span></font></code><i><span style='white-space: nowrap'>jp</span></i><code><font color="blue"><span style='white-space: nowrap'><br/>
</span></font></code>(see description for <i>SizeVector</i> in
<a href="lufactor.xml#SizeVector" target="_top"><span style='white-space: nowrap'>LuFactor</span></a>
 specifications).
The size of <i>jp</i> must be equal to <i>n</i>.
The elements of <i>jp</i> determine
the order of the columns in the permuted matrix.

<br/>
<br/>
<b><big><a name="LU" id="LU">LU</a></big></b>
<br/>
The argument <i>LU</i> has the prototype
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;const&#xA0;</span></font></code><i><span style='white-space: nowrap'>FloatVector</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;&amp;</span></font></code><i><span style='white-space: nowrap'>LU</span></i><code><font color="blue"><span style='white-space: nowrap'><br/>
</span></font></code>and the size of <i>LU</i> must equal 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>n</mi>
<mo stretchy="false">*</mo>
<mi mathvariant='italic'>n</mi>
</mrow></math>


(see description for <i>FloatVector</i> in
<a href="lufactor.xml#FloatVector" target="_top"><span style='white-space: nowrap'>LuFactor</span></a>
 specifications).

<br/>
<br/>
<b><a name="LU.L" id="LU.L">L</a></b>
<br/>
We define the lower triangular matrix <i>L</i> in terms of <i>LU</i>.
The matrix <i>L</i> is zero above the diagonal
and the rest of the elements are defined by
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;</span></font></code><i><span style='white-space: nowrap'>L</span></i><code><font color="blue"><span style='white-space: nowrap'>(</span></font></code><i><span style='white-space: nowrap'>i</span></i><code><font color="blue"><span style='white-space: nowrap'>,&#xA0;</span></font></code><i><span style='white-space: nowrap'>j</span></i><code><font color="blue"><span style='white-space: nowrap'>)&#xA0;=&#xA0;</span></font></code><i><span style='white-space: nowrap'>LU</span></i><code><font color="blue"><span style='white-space: nowrap'>[&#xA0;</span></font></code><i><span style='white-space: nowrap'>ip</span></i><code><font color="blue"><span style='white-space: nowrap'>[</span></font></code><i><span style='white-space: nowrap'>i</span></i><code><font color="blue"><span style='white-space: nowrap'>]&#xA0;*&#xA0;</span></font></code><i><span style='white-space: nowrap'>n</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;+&#xA0;</span></font></code><i><span style='white-space: nowrap'>jp</span></i><code><font color="blue"><span style='white-space: nowrap'>[</span></font></code><i><span style='white-space: nowrap'>j</span></i><code><font color="blue"><span style='white-space: nowrap'>]&#xA0;]<br/>
</span></font></code>for 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>i</mi>
<mo stretchy="false">=</mo>
<mn>0</mn>
<mo stretchy="false">,</mo>
<mo stretchy="false">&#x02026;</mo>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>n</mi>
<mn>-1</mn>
</mrow></math>

 and 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>j</mi>
<mo stretchy="false">=</mo>
<mn>0</mn>
<mo stretchy="false">,</mo>
<mo stretchy="false">&#x02026;</mo>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>i</mi>
</mrow></math>

.

<br/>
<br/>
<b><a name="LU.U" id="LU.U">U</a></b>
<br/>
We define the upper triangular matrix <i>U</i> in terms of <i>LU</i>.
The matrix <i>U</i> is zero below the diagonal,
one on the diagonal,
and the rest of the elements are defined by
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;</span></font></code><i><span style='white-space: nowrap'>U</span></i><code><font color="blue"><span style='white-space: nowrap'>(</span></font></code><i><span style='white-space: nowrap'>i</span></i><code><font color="blue"><span style='white-space: nowrap'>,&#xA0;</span></font></code><i><span style='white-space: nowrap'>j</span></i><code><font color="blue"><span style='white-space: nowrap'>)&#xA0;=&#xA0;</span></font></code><i><span style='white-space: nowrap'>LU</span></i><code><font color="blue"><span style='white-space: nowrap'>[&#xA0;</span></font></code><i><span style='white-space: nowrap'>ip</span></i><code><font color="blue"><span style='white-space: nowrap'>[</span></font></code><i><span style='white-space: nowrap'>i</span></i><code><font color="blue"><span style='white-space: nowrap'>]&#xA0;*&#xA0;</span></font></code><i><span style='white-space: nowrap'>n</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;+&#xA0;</span></font></code><i><span style='white-space: nowrap'>jp</span></i><code><font color="blue"><span style='white-space: nowrap'>[</span></font></code><i><span style='white-space: nowrap'>j</span></i><code><font color="blue"><span style='white-space: nowrap'>]&#xA0;]<br/>
</span></font></code>for 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>i</mi>
<mo stretchy="false">=</mo>
<mn>0</mn>
<mo stretchy="false">,</mo>
<mo stretchy="false">&#x02026;</mo>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>n</mi>
<mn>-2</mn>
</mrow></math>

 and 
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow>
<mi mathvariant='italic'>j</mi>
<mo stretchy="false">=</mo>
<mi mathvariant='italic'>i</mi>
<mo stretchy="false">+</mo>
<mn>1</mn>
<mo stretchy="false">,</mo>
<mo stretchy="false">&#x02026;</mo>
<mo stretchy="false">,</mo>
<mi mathvariant='italic'>n</mi>
<mn>-1</mn>
</mrow></math>

.

<br/>
<br/>
<b><a name="LU.P" id="LU.P">P</a></b>
<br/>
We define the permuted matrix <i>P</i> in terms of 
the matrix <i>L</i> and the matrix <i>U</i> 
by <code><font color="blue"></font></code><i><span style='white-space: nowrap'>P</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;=&#xA0;</span></font></code><i><span style='white-space: nowrap'>L</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;*&#xA0;</span></font></code><i><span style='white-space: nowrap'>U</span></i>.

<br/>
<br/>
<b><a name="LU.A" id="LU.A">A</a></b>
<br/>
The matrix <i>A</i>, 
which defines the linear equations that we are solving, is given by
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;</span></font></code><i><span style='white-space: nowrap'>P</span></i><code><font color="blue"><span style='white-space: nowrap'>(</span></font></code><i><span style='white-space: nowrap'>i</span></i><code><font color="blue"><span style='white-space: nowrap'>,&#xA0;</span></font></code><i><span style='white-space: nowrap'>j</span></i><code><font color="blue"><span style='white-space: nowrap'>)&#xA0;=&#xA0;</span></font></code><i><span style='white-space: nowrap'>A</span></i><code><font color="blue"><span style='white-space: nowrap'>[&#xA0;</span></font></code><i><span style='white-space: nowrap'>ip</span></i><code><font color="blue"><span style='white-space: nowrap'>[</span></font></code><i><span style='white-space: nowrap'>i</span></i><code><font color="blue"><span style='white-space: nowrap'>]&#xA0;*&#xA0;</span></font></code><i><span style='white-space: nowrap'>n</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;+&#xA0;</span></font></code><i><span style='white-space: nowrap'>jp</span></i><code><font color="blue"><span style='white-space: nowrap'>[</span></font></code><i><span style='white-space: nowrap'>j</span></i><code><font color="blue"><span style='white-space: nowrap'>]&#xA0;]<br/>
</span></font></code>(Hence 
<i>LU</i> contains a permuted factorization of the matrix <i>A</i>.)


<br/>
<br/>
<b><big><a name="X" id="X">X</a></big></b>
<br/>
The argument <i>X</i> has prototype
<code><font color="blue"><span style='white-space: nowrap'><br/>
&#xA0;&#xA0;&#xA0;&#xA0;&#xA0;</span></font></code><i><span style='white-space: nowrap'>FloatVector</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;&amp;</span></font></code><i><span style='white-space: nowrap'>X</span></i><code><font color="blue"><span style='white-space: nowrap'><br/>
</span></font></code>(see description for <i>FloatVector</i> in
<a href="lufactor.xml#FloatVector" target="_top"><span style='white-space: nowrap'>LuFactor</span></a>
 specifications).
The matrix <i>X</i>
must have the same number of rows as the matrix <i>A</i>.
The input value of <i>X</i> is the matrix <i>B</i> and the 
output value solves the matrix equation <code><font color="blue"></font></code><i><span style='white-space: nowrap'>A</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;*&#xA0;</span></font></code><i><span style='white-space: nowrap'>X</span></i><code><font color="blue"><span style='white-space: nowrap'>&#xA0;=&#xA0;</span></font></code><i><span style='white-space: nowrap'>B</span></i>.



<br/>
<br/>
<b><big><a name="Example" id="Example">Example</a></big></b>
<br/>
The file <a href="lu_solve.hpp.xml" target="_top"><span style='white-space: nowrap'>lu_solve.hpp</span></a>
 is a good example usage of 
<code><font color="blue">LuFactor</font></code> with <code><font color="blue">LuInvert</font></code>.
The file 
<a href="luinvert.cpp.xml" target="_top"><span style='white-space: nowrap'>LuInvert.cpp</span></a>

contains an example and test of using <code><font color="blue">LuInvert</font></code> by itself.
It returns true if it succeeds and false otherwise.

<br/>
<br/>
<b><big><a name="Source" id="Source">Source</a></big></b>
<br/>
The file <a href="lu_invert.hpp.xml" target="_top"><span style='white-space: nowrap'>lu_invert.hpp</span></a>
 contains the
current source code that implements these specifications.


<hr/>Input File: cppad/lu_invert.hpp

</body>
</html>