Sophie

## arpack-3.3.0-3.mga6.x86_64.rpm

```      program dsdrv6
c
c     Program to illustrate the idea of reverse communication
c     in Cayley mode for a generalized symmetric eigenvalue
c     problem.  The following program uses the two LAPACK subroutines
c     dgttrf.f and dgttrs.f to factor and solve a tridiagonal system of
c     equations.
c
c     We implement example six of ex-sym.doc in DOCUMENTS directory
c
c\Example-6
c     ... Suppose we want to solve A*x = lambda*M*x in inverse mode,
c         where A and M are obtained by the finite element of the
c         1-dimensional discrete Laplacian
c                             d^2u / dx^2
c         on the interval [0,1] with zero Dirichlet boundary condition
c         using piecewise linear elements.
c
c     ... OP = (inv[A-sigma*M])*(A+sigma*M)  and  B = M.
c
c     ... Use mode 5 of DSAUPD.
c
c\BeginLib
c
c\References:
c  1. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos
c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems",
c     SIAM J. Matr. Anal. Apps.,  January (1993).
c
c\Routines called:
c     dsaupd  ARPACK reverse communication interface routine.
c     dseupd  ARPACK routine that returns Ritz values and (optionally)
c             Ritz vectors.
c     dgttrf  LAPACK tridiagonal factorization routine.
c     dgttrs  LAPACK tridiagonal solve routine.
c     daxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     dcopy   Level 1 BLAS that copies one vector to another.
c     dscal   Level 1 BLAS that scales a vector by a scalar.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     av      Matrix vector multiplication routine that computes A*x.
c     mv      Matrix vector multiplication routine that computes M*x.
c
c\Author
c     Danny Sorensen
c     Richard Lehoucq
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: sdrv6.F   SID: 2.5   DATE OF SID: 10/17/00   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c------------------------------------------------------------------------
c
c     %-----------------------------%
c     | Define leading dimensions   |
c     | for all arrays.             |
c     | MAXN:   Maximum dimension   |
c     |         of the A allowed.   |
c     | MAXNEV: Maximum NEV allowed |
c     | MAXNCV: Maximum NCV allowed |
c     %-----------------------------%
c
integer          maxn, maxnev, maxncv, ldv
parameter        (maxn=256, maxnev=10, maxncv=25,
&                 ldv=maxn)
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
Double precision
&                 v(ldv,maxncv), workl(maxncv*(maxncv+8)),
&                 workd(3*maxn), d(maxncv,2), resid(maxn),
&                 temp(maxn), ax(maxn), mx(maxn)
logical          select(maxncv)
integer          iparam(11), ipntr(11), ipiv(maxn)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
character        bmat*1, which*2
integer          ido, n, nev, ncv, lworkl, info, j, ierr,
&                 nconv, maxitr, ishfts, mode
logical          rvec
Double precision
&                 sigma, r1, r2, tol, h
c
c     %------------%
c     | Parameters |
c     %------------%
c
Double precision
&                 zero, one, two, four, six
parameter        (zero = 0.0D+0, one = 1.0D+0,
&                  four = 4.0D+0, six = 6.0D+0,
&                  two = 2.0D+0 )
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
Double precision
&                 dnrm2
external         daxpy, dcopy, dscal, dnrm2, dgttrf, dgttrs
c
c     %--------------------%
c     | Intrinsic function |
c     %--------------------%
c
intrinsic        abs
c
c     %-----------------------%
c     | Executable statements |
c     %-----------------------%
c
c     %--------------------------------------------------%
c     | The number N is the dimension of the matrix. A   |
c     | generalized eigenvalue problem is solved (BMAT = |
c     | 'G'.) NEV is the number of eigenvalues to be     |
c     | approximated.  Since the Cayley mode is used,    |
c     | WHICH is set to 'LM'.  The user can modify NEV,  |
c     | NCV, SIGMA to solve problems of different sizes, |
c     | and to get different parts of the spectrum.      |
c     | However, The following conditions must be        |
c     | satisfied:                                       |
c     |                 N <= MAXN,                       |
c     |               NEV <= MAXNEV,                     |
c     |           NEV + 1 <= NCV <= MAXNCV               |
c     %--------------------------------------------------%
c
n = 100
nev = 4
ncv = 20
if ( n .gt. maxn ) then
print *, ' ERROR with _SDRV6: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _SDRV6: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _SDRV6: NCV is greater than MAXNCV '
go to 9000
end if
bmat = 'G'
which = 'LM'
sigma = 1.5D+2
c
c     %--------------------------------------------------%
c     | The work array WORKL is used in DSAUPD as        |
c     | workspace.  Its dimension LWORKL is set as       |
c     | illustrated below.  The parameter TOL determines |
c     | the stopping criterion.  If TOL<=0, machine      |
c     | precision is used.  The variable IDO is used for |
c     | reverse communication and is initially set to 0. |
c     | Setting INFO=0 indicates that a random vector is |
c     | generated in DSAUPD to start the Arnoldi         |
c     | iteration.                                       |
c     %--------------------------------------------------%
c
lworkl = ncv*(ncv+8)
tol = zero
ido = 0
info = 0
c
c     %---------------------------------------------------%
c     | This program uses exact shifts with respect to    |
c     | the current Hessenberg matrix (IPARAM(1) = 1).    |
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 5 specified in the      |
c     | documentation of DSAUPD is used (IPARAM(7) = 5).  |
c     | All these options may be changed by the user. For |
c     | details, see the documentation in DSAUPD.         |
c     %---------------------------------------------------%
c
ishfts = 1
maxitr = 300
mode   = 5
c
iparam(1) = ishfts
iparam(3) = maxitr
iparam(7) = mode
c
c     %------------------------------------------------------%
c     | Call LAPACK routine to factor (A-sigma*M).  The      |
c     | stiffness matrix A is the 1-d discrete Laplacian.    |
c     | The mass matrix M is the associated mass matrix      |
c     | arising from using piecewise linear finite elements  |
c     | on the interval [0, 1].                              |
c     %------------------------------------------------------%
c
h = one / dble(n+1)
r1 = (four / six) * h
r2 = (one / six) * h
do 20 j=1,n
ad(j) = two / h - sigma * r1
adl(j) = -one / h - sigma * r2
20   continue
if (ierr .ne. 0) then
print *, ' '
print *, ' Error with _gttrf in _SDRV6.'
print *, ' '
go to 9000
end if
c
c     %-------------------------------------------%
c     | M A I N   L O O P (Reverse communication) |
c     %-------------------------------------------%
c
10   continue
c
c        %---------------------------------------------%
c        | Repeatedly call the routine DSAUPD and take |
c        | actions indicated by parameter IDO until    |
c        | either convergence is indicated or maxitr   |
c        | has been exceeded.                          |
c        %---------------------------------------------%
c
call dsaupd ( ido, bmat, n, which, nev, tol, resid, ncv,
&                 v, ldv, iparam, ipntr, workd, workl, lworkl,
&                 info )
c
if (ido .eq. -1) then
c
c           %-------------------------------------------------------%
c           | Perform  y <--- OP*x = (inv[A-SIGMA*M])*(A+SIGMA*M)*x |
c           | to force starting vector into the range of OP.  The   |
c           | user should provide his/her matrix vector (A*x, M*x)  |
c           | multiplication routines and a linear system solver    |
c           | here.  The matrix vector multiplication routine takes |
c           | workd(ipntr(1)) as the input vector.  The final       |
c           | result is returned to workd(ipntr(2)).                |
c           %-------------------------------------------------------%
c
call av (n, workd(ipntr(1)), workd(ipntr(2)))
call mv (n, workd(ipntr(1)), temp)
call daxpy(n, sigma, temp, 1, workd(ipntr(2)), 1)
c
&                workd(ipntr(2)), n, ierr)
if (ierr .ne. 0) then
print *, ' '
print *, ' Error with _gttrs in _SDRV6.'
print *, ' '
go to 9000
end if
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
go to 10
c
else if (ido .eq. 1) then
c
c           %----------------------------------------------------%
c           | Perform y <-- OP*x = inv[A-SIGMA*M]*(A+SIGMA*M)*x. |
c           | M*x has been saved in workd(ipntr(3)).  The user   |
c           | need the matrix vector multiplication (A*x)        |
c           | routine and a linear system solver here.  The      |
c           | matrix vector multiplication routine takes         |
c           | workd(ipntr(1)) as the input, and the result is    |
c           | combined with workd(ipntr(3)) to form the input    |
c           | for the linear system solver.  The final result is |
c           | returned to workd(ipntr(2)).                       |
c           %----------------------------------------------------%
c
call av (n, workd(ipntr(1)), workd(ipntr(2)))
call daxpy(n, sigma, workd(ipntr(3)), 1, workd(ipntr(2)), 1)
&                   workd(ipntr(2)), n, ierr)
if (ierr .ne. 0) then
print *, ' '
print *, ' Error with _gttrs in _SDRV6. '
print *, ' '
go to 9000
end if
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
go to 10
c
else if (ido .eq. 2) then
c
c           %--------------------------------------------%
c           |             Perform  y <--- M*x.           |
c           | Need matrix vector multiplication routine  |
c           | here that takes workd(ipntr(1)) as input   |
c           | and returns the result to workd(ipntr(2)). |
c           %--------------------------------------------%
c
call mv (n, workd(ipntr(1)), workd(ipntr(2)))
c
c           %-----------------------------------------%
c           | L O O P   B A C K to call DSAUPD again. |
c           %-----------------------------------------%
c
go to 10
c
end if
c
c     %-----------------------------------------%
c     | Either we have convergence, or there is |
c     | an error.                               |
c     %-----------------------------------------%
c
if ( info .lt. 0 ) then
c
c        %--------------------------%
c        | Error message, check the |
c        | documentation in DSAUPD  |
c        %--------------------------%
c
print *, ' '
print *, ' Error with _saupd, info = ',info
print *, ' Check the documentation of _saupd. '
print *, ' '
c
else
c
c        %-------------------------------------------%
c        | No fatal errors occurred.                 |
c        | Post-Process using DSEUPD.                |
c        |                                           |
c        | Computed eigenvalues may be extracted.    |
c        |                                           |
c        | Eigenvectors may also be computed now if  |
c        | desired.  (indicated by rvec = .true.)    |
c        %-------------------------------------------%
c
rvec = .true.
c
call dseupd ( rvec, 'All', select, d, v, ldv, sigma,
&        bmat, n, which, nev, tol, resid, ncv, v, ldv,
&        iparam, ipntr, workd, workl, lworkl, ierr )
c
c        %----------------------------------------------%
c        | Eigenvalues are returned in the first column |
c        | of the two dimensional array D and the       |
c        | corresponding eigenvectors are returned in   |
c        | the first NEV columns of the two dimensional |
c        | array V if requested.  Otherwise, an         |
c        | orthogonal basis for the invariant subspace  |
c        | corresponding to the eigenvalues in D is     |
c        | returned in V.                               |
c        %----------------------------------------------%
c
if ( ierr .ne. 0 ) then
c
c           %------------------------------------%
c           | Error condition:                   |
c           | Check the documentation of DSEUPD. |
c           %------------------------------------%
c
print *, ' '
print *, ' Error with _seupd, info = ', ierr
print *, ' Check the documentation of _seupd '
print *, ' '
c
else
c
c           %---------------------------%
c           | Compute the residual norm |
c           |                           |
c           |   ||  A*x - lambda*x ||   |
c           |                           |
c           | for the NCONV accurately  |
c           | computed eigenvalues and  |
c           | eigenvectors.  (iparam(5) |
c           | indicates how many are    |
c           | accurate to the requested |
c           | tolerance)                |
c           %---------------------------%
c
nconv = iparam(5)
do 30 j=1, nconv
call av(n, v(1,j), ax)
call mv(n, v(1,j), mx)
call daxpy (n, -d(j,1), mx, 1, ax, 1)
d(j,2) = dnrm2(n, ax, 1)
d(j,2) = d(j,2) / abs(d(j,1))
30         continue
c
call dmout(6, nconv, 2, d, maxncv, -6,
&           'Ritz values and relative residuals')
c
end if
c
c        %------------------------------------------%
c        | Print additional convergence information |
c        %------------------------------------------%
c
if ( info .eq. 1) then
print *, ' '
print *, ' Maximum number of iterations reached.'
print *, ' '
else if ( info .eq. 3) then
print *, ' '
print *, ' No shifts could be applied during implicit',
&               ' Arnoldi update, try increasing NCV.'
print *, ' '
end if
c
print *, ' '
print *, ' _SDRV6 '
print *, ' ====== '
print *, ' '
print *, ' Size of the matrix is', n
print *, ' The number of Ritz values requested is', nev
print *, ' The number of Arnoldi vectors generated',
&            ' (NCV) is ', ncv
print *, ' What portion of the spectrum: ', which
print *, ' The number of converged Ritz values is ',
&              nconv
print *, ' The number of Implicit Arnoldi update',
&           ' iterations taken is', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence criterion is ', tol
print *, ' '
c
end if
c
c     %---------------------------%
c     | Done with program dsdrv6. |
c     %---------------------------%
c
9000 continue
c
end
c
c------------------------------------------------------------------------
c     Matrix vector subroutine
c     where the matrix used is the 1 dimensional mass matrix
c     arising from using the piecewise linear finite element
c     on the interval [0,1].
c
subroutine mv (n, v, w)
integer           n, j
Double precision
&                  v(n), w(n), one, four, six, h
parameter         (one = 1.0D+0, four = 4.0D+0,
&                   six = 6.0D+0)
c
w(1) =  four*v(1) + v(2)
do 100 j = 2,n-1
w(j) = v(j-1) + four*v(j) + v(j+1)
100 continue
j = n
w(j) = v(j-1) + four*v(j)
c
c     Scale the vector w by h.
c
h = one / (six*dble(n+1))
call dscal(n, h, w, 1)
return
end
c
c------------------------------------------------------------------------
c     Matrix vector subroutine
c     where the matrix is the stiffness matrix obtained from the
c     finite element discretization of the 1-dimensional discrete Laplacian
c     on the interval [0,1] with zero Dirichlet boundary condition
c     using piecewise linear elements.
c
subroutine av (n, v, w)
integer           n, j
Double precision
&                  v(n), w(n), one, two, h
parameter         (one = 1.0D+0, two = 2.0D+0)
c
w(1) =  two*v(1) - v(2)
do 100 j = 2,n-1
w(j) = - v(j-1) + two*v(j) - v(j+1)
100 continue
j = n
w(j) = - v(j-1) + two*v(j)
c
c     Scale the vector w by (1/h).
c
h = one / dble(n+1)
call dscal(n, one/h, w, 1)
return
end

```