Sophie

## arpack-3.3.0-3.mga6.x86_64.rpm

```      program cnbdr1
c
c     ... Construct the matrix A in LAPACK-style band form.
c         The matrix A is derived from the discretization of
c         the 2-d convection-diffusion operator
c
c              -Laplacian(u) + rho*partial(u)/partial(x).
c
c         on the unit square with zero Dirichlet boundary condition
c         using standard central difference.
c
c     ... Call CNBAND to find eigenvalues LAMBDA such that
c                          A*x = x*LAMBDA.
c
c     ... Use mode 1 of CNAUPD.
c
c\BeginLib
c
c     cnband  ARPACK banded eigenproblem solver.
c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     claset  LAPACK routine to initialize a matrix to zero.
c     caxpy   Level 1 BLAS that computes y <- alpha*x+y.
c     scnrm2  Level 1 BLAS that computes the norm of a vector.
c     cgbmv   Level 2 BLAS that computes the band matrix vector product
c
c\Author
c     Richard Lehoucq
c     Danny Sorensen
c     Chao Yang
c     Dept. of Computational &
c     Applied Mathematics
c     Rice University
c     Houston, Texas
c
c\SCCS Information: @(#)
c FILE: nbdr1.F   SID: 2.3   DATE OF SID: 08/26/96   RELEASE: 2
c
c\Remarks
c     1. None
c
c\EndLib
c
c----------------------------------------------------------------------
c
c     %-------------------------------------%
c     | Define leading dimensions for all   |
c     | arrays.                             |
c     | MAXN   - Maximum size of the matrix |
c     | MAXNEV - Maximum number of          |
c     |          eigenvalues to be computed |
c     | MAXNCV - Maximum number of Arnoldi  |
c     |          vectors stored             |
c     | MAXBDW - Maximum bandwidth          |
c     %-------------------------------------%
c
integer          maxn, maxnev, maxncv, maxbdw, lda,
&                 lworkl, ldv
parameter        ( maxn = 1000, maxnev = 25, maxncv=50,
&                   maxbdw=50, lda = maxbdw, ldv = maxn )
c
c     %--------------%
c     | Local Arrays |
c     %--------------%
c
integer          iparam(11), iwork(maxn)
logical          select(maxncv)
Complex
&                 a(lda,maxn), m(lda,maxn), fac(lda,maxn),
&                 workl(3*maxncv*maxncv+5*maxncv), workd(3*maxn),
&                 workev(2*maxncv), v(ldv, maxncv),
&                 resid(maxn), d(maxncv), ax(maxn)
Real
&                 rwork(maxn), rd(maxncv,3)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
character        which*2, bmat
integer          nev, ncv, kl, ku, info, i, j,
&                 n, nx, lo, isub, isup, idiag, maxitr, mode,
&                 nconv
logical          rvec
Real
&                 tol
Complex
&                 rho, h, h2, sigma
c
c     %------------%
c     | Parameters |
c     %------------%
c
Complex
&                 one, zero, two
parameter        ( one = (1.0E+0, 0.0E+0) ,
&                   zero = (0.0E+0, 0.0E+0) ,
&                   two = (2.0E+0, 0.0E+0)  )
c
c     %-----------------------------%
c     | BLAS & LAPACK routines used |
c     %-----------------------------%
c
Real
&                  scnrm2, slapy2
external          scnrm2, cgbmv, caxpy, slapy2, claset
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c
c     %-------------------------------------------------%
c     | The number NX is the number of interior points  |
c     | in the discretization of the 2-dimensional      |
c     | convection-diffusion operator on the unit       |
c     | square with zero Dirichlet boundary condition.  |
c     | The number N(=NX*NX) is the dimension of the    |
c     | matrix.  A standard eigenvalue problem is       |
c     | solved (BMAT = 'I').  NEV is the number of      |
c     | eigenvalues to be approximated. The user can    |
c     | modify NX, NEV, NCV and WHICH to solve problems |
c     | of different sizes, and to get different parts  |
c     | the spectrum.  However, the following           |
c     | conditions must be satisfied:                   |
c     |                   N <= MAXN                     |
c     |                 NEV <= MAXNEV                   |
c     |           NEV + 2 <= NCV <= MAXNCV              |
c     %-------------------------------------------------%
c
nx  = 10
n    = nx*nx
nev  = 4
ncv  = 10
if ( n .gt. maxn ) then
print *, ' ERROR with _NBDR1: N is greater than MAXN '
go to 9000
else if ( nev .gt. maxnev ) then
print *, ' ERROR with _NBDR1: NEV is greater than MAXNEV '
go to 9000
else if ( ncv .gt. maxncv ) then
print *, ' ERROR with _NBDR1: NCV is greater than MAXNCV '
go to 9000
end if
bmat = 'I'
which = 'LM'
c
c     %-----------------------------------------------------%
c     | The work array WORKL is used in CNAUPD as           |
c     | workspace.  Its dimension LWORKL is set as          |
c     | illustrated below.  The parameter TOL determines    |
c     | the stopping criterion. If TOL<=0, machine          |
c     | precision is used.  Setting INFO=0 indicates that a |
c     | random vector is generated in CNAUPD to start the   |
c     | Arnoldi iteration.                                  |
c     %-----------------------------------------------------%
c
lworkl  = 3*ncv**2+5*ncv
tol  = 0.0
info = 0
c
c     %---------------------------------------------------%
c     | IPARAM(3) specifies the maximum number of Arnoldi |
c     | iterations allowed.  Mode 1 of CNAUPD is used     |
c     | (IPARAM(7) = 1). All these options can be changed |
c     | by the user. For details, see the documentation   |
c     | in cnband.                                        |
c     %---------------------------------------------------%
c
maxitr = 300
mode   = 1
c
iparam(3) = maxitr
iparam(7) = mode
c
c     %----------------------------------------%
c     | Construct the matrix A in LAPACK-style |
c     | banded form.                           |
c     %----------------------------------------%
c
c     %---------------------------------------------%
c     | Zero out the workspace for banded matrices. |
c     %---------------------------------------------%
c
call claset('A', lda, n, zero, zero, a, lda)
call claset('A', lda, n, zero, zero, m, lda)
call claset('A', lda, n, zero, zero, fac, lda)
c
c     %-------------------------------------%
c     | KU, KL are number of superdiagonals |
c     | and subdiagonals within the band of |
c     | matrices A and M.                   |
c     %-------------------------------------%
c
kl   = nx
ku   = nx
c
c     %---------------%
c     | Main diagonal |
c     %---------------%
c
h = one / cmplx(nx+1)
h2 = h*h
c
idiag = kl+ku+1
do 30 j = 1, n
a(idiag,j) = (4.0E+0, 0.0E+0)  / h2
30  continue
c
c     %-------------------------------------%
c     | First subdiagonal and superdiagonal |
c     %-------------------------------------%
c
rho = (1.0E+2, 0.0E+0)
isup = kl+ku
isub = kl+ku+2
do 50 i = 1, nx
lo = (i-1)*nx
do 40 j = lo+1, lo+nx-1
a(isup,j+1) = -one/h2 + rho/two/h
a(isub,j) = -one/h2 - rho/two/h
40    continue
50  continue
c
c     %------------------------------------%
c     | KL-th subdiagonal and KU-th super- |
c     | diagonal.                          |
c     %------------------------------------%
c
isup = kl+1
isub = 2*kl+ku+1
do 80 i = 1, nx-1
lo = (i-1)*nx
do 70 j = lo+1, lo+nx
a(isup,nx+j)  = -one / h2
a(isub,j) = -one / h2
70      continue
80   continue
c
c     %-----------------------------------------------%
c     | Call ARPACK banded solver to find eigenvalues |
c     | and eigenvectors. Eigenvalues are returned in |
c     | the one dimensional array D.  Eigenvectors    |
c     | are returned in the first NCONV (=IPARAM(5))  |
c     | columns of V.                                 |
c     %-----------------------------------------------%
c
rvec = .true.
call cnband(rvec, 'A', select, d, v, ldv, sigma,
&           workev, n, a, m, lda, fac, kl, ku, which,
&           bmat, nev, tol, resid, ncv, v, ldv, iparam,
&           workd, workl, lworkl, rwork, iwork, info)
c
if ( info .eq. 0) then
c
nconv = iparam(5)
c
c        %-----------------------------------%
c        | Print out convergence information |
c        %-----------------------------------%
c
print *, ' '
print *, '_NBDR1 '
print *, '====== '
print *, ' '
print *, ' The size of the matrix is ', n
print *, ' Number of eigenvalue requested is ', nev
print *, ' The number of Arnoldi vectors generated',
&            ' (NCV) is ', ncv
print *, ' The number of converged Ritz values is ',
&              nconv
print *, ' What portion of the spectrum ', which
print *, ' The number of Implicit Arnoldi ',
&              ' update taken is ', iparam(3)
print *, ' The number of OP*x is ', iparam(9)
print *, ' The convergence tolerance is ', tol
print *, ' '
c
c        %----------------------------%
c        | Compute the residual norm. |
c        |    ||  A*x - lambda*x ||   |
c        %----------------------------%
c
do 90 j = 1, nconv
c
c           %---------------------------%
c           | Compute the residual norm |
c           |   ||  A*x - lambda*x ||   |
c           %---------------------------%
c
call cgbmv('Notranspose', n, n, kl, ku, one,
&                 a(kl+1,1), lda, v(1,j), 1, zero,
&                 ax, 1)
call caxpy(n, -d(j), v(1,j), 1, ax, 1)
rd(j,1) = real (d(j))
rd(j,2) = aimag(d(j))
rd(j,3) = scnrm2(n, ax, 1)
rd(j,3) = rd(j,3) / slapy2(rd(j,1),rd(j,2))
90      continue

call smout(6, nconv, 3, rd, maxncv, -6,
&             'Ritz values (Real,Imag) and relative residuals')
else
c
c        %-------------------------------------%
c        | Either convergence failed, or there |
c        | is error.  Check the documentation  |
c        | for cnband.                         |
c        %-------------------------------------%
c
print *, ' '
print *, ' Error with _nband, info= ', info
print *, ' Check the documentation of _nband '
print *, ' '
c
end if
c
9000 end

```