Sophie

Sophie

distrib > Mageia > 7 > x86_64 > by-pkgid > d96c571a2c0bcc32a63f4cd5f968e345 > files > 1039

xmds-2.2.3-2.mga7.noarch.rpm

<?xml version="1.0" encoding="UTF-8"?>
<simulation xmds-version="2">
  <name>groundstate_demo2</name>
  <author>Joe Hope and Graham Dennis</author>
  <description>
    Calculate the ground state of the non-linear Schrodinger equation in a harmonic magnetic trap.
    This is done by evolving it in imaginary time while re-normalising each timestep.
	We demonstrate calculating the energy, energy per particle, and chemical potential at each time step to
	monitor the convergence of the imaginary time algorithm.
  </description>
  
  <features>
    <auto_vectorise />
    <benchmark />
    <error_check />
    <bing />
    <fftw plan="exhaustive" />
    <globals>
      <![CDATA[
        const real Uint = 1.0e2;
        const real Nparticles = 1;

        /* offset constants */
        const real EnergyOffset = pow(pow(3.0*Nparticles/4*Uint,2.0)/2.0,1/3.0); // 1D

      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="y" lattice="1024"  domain="(-10.0, 10.0)" />
    </transverse_dimensions>
  </geometry>
  
  <vector name="potential" initial_basis="y" type="complex">
    <components>
      V1
    </components>
    <initialisation>
      <![CDATA[
        real Vtrap = 0.5*y*y;
      
        V1  = -i*(Vtrap - EnergyOffset);
      
      ]]>
    </initialisation>
  </vector>
  
  <vector name="wavefunction" initial_basis="y" type="complex">
    <components> phi </components>
    <initialisation>
      <![CDATA[
        if (fabs(y) < 1.0) {
          phi = 1.0;
          // This will be automatically normalised later
        } else {
          phi = 0.0;
        }
            ]]>
    </initialisation>
  </vector>
  
  <!-- Calculate the kinetic energy as an integral in fourier space -->
  <computed_vector name="kinetic_energy" dimensions="" type="real">
    <components>KE</components>
    <evaluation>
      <dependencies basis="ky">wavefunction</dependencies>
      <![CDATA[
                  KE = 0.5*ky*ky*mod2(phi);
      ]]>
    </evaluation>
  </computed_vector>
  
  <!-- Calculate the spatial energy terms as integrals in position space -->
  <computed_vector name="spatial_energy" dimensions="" type="real">
    <components>VE NLE</components>
    <evaluation>
      <dependencies basis="y">potential wavefunction</dependencies>
      <![CDATA[
            VE = -Im(V1) * mod2(phi);
            NLE = 0.5*Uint *mod2(phi) * mod2(phi);
      ]]>
    </evaluation>
  </computed_vector>
  
  <!-- 
  Add the energy contributions.  We can't add a 'KE' term to the spatial_energy computed_vector because then we'd be integrating the scalar
  over the physical volume, and we'd add KE * V to any term, instead of just KE.
   -->
  <computed_vector name="energy" dimensions="" type="real">
    <components>E E_over_N mu</components>
    <evaluation>
      <dependencies>spatial_energy kinetic_energy normalisation</dependencies>
      <![CDATA[
            E = KE + VE + NLE;
            E_over_N = E/Ncalc;
            mu = (KE + VE + 2.0*NLE) / Ncalc;
      ]]>
    </evaluation>
  </computed_vector>
  
  <computed_vector name="normalisation" dimensions="" type="real">
    <components>
      Ncalc
    </components>
    <evaluation>
      <dependencies basis="y">wavefunction</dependencies>
      <![CDATA[
        // Calculate the current normalisation of the wave function.
        Ncalc = mod2(phi);
      ]]>
    </evaluation>
  </computed_vector>
  
  <sequence>
    <integrate algorithm="RK4" interval="1e0" steps="10000" tolerance="1e-8">
      <samples>20 20</samples>
      <filters>
        <filter>
          <dependencies>wavefunction normalisation</dependencies>
          <![CDATA[
            // Correct normalisation of the wavefunction
            phi *= sqrt(Nparticles/Ncalc);
          ]]>
        </filter>
      </filters>
      <operators>
        <operator kind="ip">
          <operator_names>T</operator_names>
          <![CDATA[
            T = -0.5*ky*ky;
          ]]>
        </operator>
        <integration_vectors>wavefunction</integration_vectors>
        <dependencies>potential</dependencies>
        <![CDATA[
          dphi_dt = T[phi] - (i*V1 + Uint*mod2(phi))*phi;
        ]]>
      </operators>
    </integrate>

    <breakpoint filename="groundstate_break.xsil" format="ascii">
      <dependencies basis="ky">wavefunction</dependencies>
    </breakpoint>
  </sequence>

  <output filename="groundstate.xsil">
      <sampling_group basis="y" initial_sample="no">
        <moments>norm_dens</moments>
        <dependencies>wavefunction normalisation</dependencies>
        <![CDATA[
          norm_dens = mod2(phi)/Ncalc;
        ]]>
      </sampling_group>
      <sampling_group basis="" initial_sample="no">
        <moments>ER E_over_NR NR muR</moments>
        <dependencies>energy normalisation</dependencies>
        <![CDATA[
        ER = E;
        E_over_NR = E_over_N;
        NR = Ncalc;
        muR = mu;
        ]]>
      </sampling_group>
  </output>
</simulation>