Sophie

Sophie

distrib > * > cooker > x86_64 > by-pkgid > 6821ecc3db154939da2f564d5e6d1885 > files > 863

ppl-docs-0.11.2-1.x86_64.rpm

\form#0:$n$
\form#1:$ \Rset^n $
\form#2:$0 \geq 2$
\form#3:$0 \leq 2$
\form#4:$x \leq 2$
\form#5:$x - y \leq 2$
\form#6:$x + y \leq 2$
\form#7:$x = 2$
\form#8:$x - 3y \leq 2$
\form#9:$x - 3y < 2$
\form#10:$0 \equiv_2 1$
\form#11:$0 \equiv_2 2$
\form#12:$x + 3y \equiv_0 0$
\form#13:$x + 3y \equiv_5 0$
\form#14:$2x \leq 5$
\form#15:$x \leq 3$
\form#16:$w\textrm{-bit}$
\form#17:$2^w$
\form#18:$x \bmod 2^w$
\form#19:\[ \mathrm{wrap}^\mathrm{u}_w(x) \defeq x - 2^w \lfloor x/2^w \rfloor. \]
\form#20:\[ \mathrm{wrap}^\mathrm{s}_w(x) \defeq \begin{cases} \mathrm{wrap}^\mathrm{u}_w(x), &\text{if $\mathrm{wrap}^\mathrm{u}_w(x) < 2^{w-1}$;} \\ \mathrm{wrap}^\mathrm{u}_w(x) - 2^w, &\text{otherwise.} \end{cases} \]
\form#21:$x$
\form#22:$S \sseq \Rset$
\form#23:$\bigl\{\, \mathrm{wrap}^\mathrm{u}_w(z) \bigm| z \in S \,\bigr\}$
\form#24:$\Rset^n$
\form#25:$n\textrm{-dimensional}$
\form#26:$\Rset$
\form#27:$\nonnegRset$
\form#28:$i \in \{0, \ldots, n-1\}$
\form#29:$v_i$
\form#30:$i\textrm{-th}$
\form#31:$\vect{v} = (v_0, \ldots, v_{n-1})^\transpose \in \Rset^n$
\form#32:$\vect{0}$
\form#33:$\vect{v} \in \Rset^n$
\form#34:$\Rset^{n \times 1}$
\form#35:$\vect{v}^\transpose$
\form#36:$\vect{v},\vect{w} \in \Rset^n$
\form#37:$\langle \vect{v}, \vect{w} \rangle$
\form#38:\[ \vect{v}^\transpose \vect{w} = \sum_{i=0}^{n-1} v_i w_i. \]
\form#39:$S_1, S_2 \sseq \Rset^n$
\form#40:$S_1$
\form#41:$S_2$
\form#42:$S_1 + S_2 = \{\, \vect{v}_1 + \vect{v}_2 \mid \vect{v}_1 \in S_1, \vect{v}_2 \in S_2 \,\}.$
\form#43:$\vect{a} \in \Rset^n$
\form#44:$b \in \Rset$
\form#45:$\vect{a} \neq \vect{0}$
\form#46:$\mathord{\relsym} \in \{ =, \geq, > \}$
\form#47:$\langle \vect{a}, \vect{x} \rangle \relsym b$
\form#48:$\mathord{\relsym} \in \{ = \}$
\form#49:$\mathord{\relsym} \in \{ \geq \}$
\form#50:$\mathord{\relsym} \in \{ > \}$
\form#51:$\langle \vect{a}, \vect{x} \rangle = b$
\form#52:$\langle \vect{a}, \vect{x} \rangle \geq b$
\form#53:$\langle -\vect{a}, \vect{x} \rangle \geq -b$
\form#54:$\vect{a} = \vect{0}$
\form#55:$\langle \vect{0}, \vect{x} \rangle \relsym b$
\form#56:$\emptyset$
\form#57:$\cP \sseq \Rset^n$
\form#58:$\cP$
\form#59:$n = 0$
\form#60:$\cP = \emptyset$
\form#61:$\Pset_n$
\form#62:$\cP \in \Pset_n$
\form#63:$\CPset_n$
\form#64:$\lambda \in \nonnegRset$
\form#65:\[ \cP \sseq \bigl\{\, \vect{x} \in \Rset^n \bigm| - \lambda \leq x_j \leq \lambda \text{ for } j = 0, \ldots, n-1 \,\bigr\}. \]
\form#66:\[ \cP \defeq \{\, \vect{x} \in \Rset^n \mid A_1 \vect{x} = \vect{b}_1, A_2 \vect{x} \geq \vect{b}_2, A_3 \vect{x} > \vect{b}_3 \,\}, \]
\form#67:$i \in \{1, 2, 3\}$
\form#68:$A_i \in \Rset^{m_i} \times \Rset^n$
\form#69:$\vect{b}_i \in \Rset^{m_i}$
\form#70:$m_1, m_2, m_3 \in \Nset$
\form#71:$S = \{ \vect{x}_1, \ldots, \vect{x}_k \} \sseq \Rset^n$
\form#72:$\lambda_1, \ldots, \lambda_k \in \Rset$
\form#73:$\vect{v} = \sum_{j=1}^k \lambda_j \vect{x}_j$
\form#74:$S$
\form#75:$\forall j \in \{ 1, \ldots, k \} \itc \lambda_j \in \nonnegRset$
\form#76:$\sum_{j = 1}^k \lambda_j = 1$
\form#77:$\linearhull(S)$
\form#78:$\conichull(S)$
\form#79:$\affinehull(S)$
\form#80:$\convexhull(S)$
\form#81:$P, C \sseq \Rset^n$
\form#82:$P \union C = S$
\form#83:$\NNChull(P, C)$
\form#84:$\lambda_j > 0$
\form#85:$\vect{x}_j \in P$
\form#86:$P$
\form#87:$\NNChull(P, C) = \NNChull(P, P \union C)$
\form#88:$C \sseq P$
\form#89:\[ \convexhull(P) = \NNChull(P, \emptyset) = \NNChull(P, P) = \NNChull(P, C). \]
\form#90:$\vect{p} \in \cP$
\form#91:$\vect{c} \in \Rset^n$
\form#92:$\vect{r} \in \Rset^n$
\form#93:$\vect{r} \neq \vect{0}$
\form#94:$\cP \neq \emptyset$
\form#95:$\vect{p} + \lambda \vect{r} \in \cP$
\form#96:$\vect{l} \in \Rset^n$
\form#97:$\vect{l}$
\form#98:$-\vect{l}$
\form#99:$\vect{r}$
\form#100:$\vect{r}_1$
\form#101:$\vect{r}_2$
\form#102:$\vect{r} \neq \lambda \vect{r}_1$
\form#103:$\vect{r} \neq \lambda \vect{r}_2$
\form#104:$\vect{r}_1 \neq \lambda \vect{r}_2$
\form#105:$L$
\form#106:$R$
\form#107:$C$
\form#108:$\cG = (L, R, P, C)$
\form#109:\[ \cP = \linearhull(L) + \conichull(R) + \NNChull(P, C), \]
\form#110:$+$
\form#111:$\cP \in \CPset_n$
\form#112:$\cG = (L, R, P)$
\form#113:\[ \cP = \linearhull(L) + \conichull(R) + \convexhull(P). \]
\form#114:$P = \emptyset$
\form#115:$\Rset^2$
\form#116:$y \geq 0$
\form#117:$L = \bigl\{ (1, 0)^\transpose \bigr\}$
\form#118:$R = \bigl\{ (0, 1)^\transpose \bigr\}$
\form#119:$P = \bigl\{ (0, 0)^\transpose \bigr\}$
\form#120:$C = \emptyset$
\form#121:$\cC$
\form#122:$\cG' = (L', R', P', C') \neq \cG$
\form#123:$L' \sseq L$
\form#124:$R' \sseq R$
\form#125:$P' \sseq P$
\form#126:$C' \sseq C$
\form#127:$\cG$
\form#128:$(\cC, \cG)$
\form#129:$(L, R, P)$
\form#130:$n \in \Nset$
\form#131:$\vect{a}, \vect{x} \in \Rset^m$
\form#132:$m \leq n$
\form#133:$\vect{x} \in \Rset^m$
\form#134:$\{ \vect{x}_1, \ldots, \vect{x}_k \} \sseq \Rset^n$
\form#135:\[ \sum_{i = 1}^k \lambda_i \vect{x}_i = \vect{0}, \quad \sum_{i = 1}^k \lambda_i = 0 \]
\form#136:$i = 1, \ldots, k$
\form#137:$\lambda_i = 0$
\form#138:$n + 1$
\form#139:$k \in \Nset$
\form#140:$\pdim(\cP) = k$
\form#141:$k + 1$
\form#142:$0 \leq \pdim(\cP) \leq n$
\form#143:$-1$
\form#144:$k \leq n$
\form#145:$\pdim(\cP) \neq \pdim(\cQ)$
\form#146:$\cQ$
\form#147:$\pdim(\cP) = \pdim(\cQ)$
\form#148:$\cP_1, \cP_2 \in \Pset_n$
\form#149:$\cP_1$
\form#150:$\cP_2$
\form#151:$\cP_1 \inters \cP_2$
\form#152:$\cP_1 \uplus \cP_2$
\form#153:$\cP_1, \cP_2 \in \CPset_n$
\form#154:$\cQ \in \Pset_m$
\form#155:$\cR \in \Pset_{n+m}$
\form#156:\[ \cR \defeq \Bigl\{\, (x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1})^\transpose \in \Rset^{n+m} \Bigm| (x_0, \ldots, x_{n-1})^\transpose \in \cP, (y_0, \ldots, y_{m-1})^\transpose \in \cQ \,\Bigl\}. \]
\form#157:$n+m$
\form#158:$i$
\form#159:$\cQ \in \Pset_{n+i}$
\form#160:$i+n$
\form#161:$\cP \sseq \Rset^2$
\form#162:\[ \cQ = \bigl\{\, (x_0, x_1, x_2)^\transpose \in \Rset^3 \bigm| (x_0, x_1)^\transpose \in \cP \,\bigr\}. \]
\form#163:\[ \cQ = \bigl\{\, (x_0, x_1, 0)^\transpose \in \Rset^3 \bigm| (x_0, x_1)^\transpose \in \cP \,\bigr\}. \]
\form#164:$\cP \in \Pset_4$
\form#165:$\bigl\{ (3, 1, 0, 2)^\transpose \bigr\} \sseq \Rset^4$
\form#166:$\{x_1, x_2\}$
\form#167:\[ \cQ = \bigl\{ (3, 2)^\transpose \bigr\} \sseq \Rset^2. \]
\form#168:$m$
\form#169:$m = 2$
\form#170:\[ \cQ = \bigl\{ (3, 1)^\transpose \bigr\} \sseq \Rset^2. \]
\form#171:$\pard{\rho}{\{0, \ldots, n-1\}}{\Nset}$
\form#172:$\rho\bigl(\{0, \ldots, n-1\}\bigr) = \{0, \ldots, m-1\}$
\form#173:$\rho$
\form#174:$m = 0$
\form#175:$\Rset^0$
\form#176:\[ \cQ \defeq \Bigl\{\, \bigl(v_{\rho^{-1}(0)}, \ldots, v_{\rho^{-1}(m-1)}\bigr)^\transpose \Bigm| (v_0, \ldots, v_{n-1})^\transpose \in \cP \,\Bigr\}. \]
\form#177:$n > 0$
\form#178:$n+1$
\form#179:$\ldots$
\form#180:$n+m-1$
\form#181:\[ \cQ \defeq \sset{ \vect{u} \in \Rset^{n+m} }{ \exists \vect{v}, \vect{w} \in \cP \st u_i = v_i \\ \qquad \mathord{} \land \forall j = n, n+1, \ldots, n+m-1 \itc u_j = w_i \\ \qquad \mathord{} \land \forall k = 0, \ldots, n-1 \itc k \neq i \implies u_k = v_k = w_k }. \]
\form#182:$J = \{ j_0, \ldots, j_{m-1} \}$
\form#183:$m < n$
\form#184:$j < n$
\form#185:$j \in J$
\form#186:$i < n$
\form#187:$i \notin J$
\form#188:\[ \cQ \defeq \biguplus_{d = 0}^m \cQ_d \]
\form#189:\[ \cQ_m \defeq \sset{ \vect{u} \in \Rset^{n-m} }{ \exists \vect{v} \in \cP \st u_{i'} = v_i \\ \qquad \mathord{} \land \forall k = 0, \ldots, n-1 \itc k \neq i \implies u_{k'} = v_k } \]
\form#190:$ d = 0 $
\form#191:$ \ldots $
\form#192:$ m-1 $
\form#193:\[ \cQ_d \defeq \sset{ \vect{u} \in \Rset^{n-m} }{ \exists \vect{v} \in \cP \st u_{i'} = v_{j_d} \\ \qquad \mathord{} \land \forall k = 0, \ldots, n-1 \itc k \neq i \implies u_{k'} = v_k }, \]
\form#194:$ k = 0 $
\form#195:$ n-1 $
\form#196:\[ k' \defeq k - \card \{\, j \in J \mid k > j \,\}, \]
\form#197:$\card S$
\form#198:$\reld{\phi}{\Rset^n}{\Rset^m}$
\form#199:$\phi(S) \sseq \Rset^m$
\form#200:$\phi$
\form#201:$S \sseq \Rset^n$
\form#202:\[ \phi(S) \defeq \bigl\{\, \vect{w} \in \Rset^m \bigm| \exists \vect{v} \in S \st (\vect{v}, \vect{w}) \in \phi \,\bigr\}. \]
\form#203:$\phi^{-1}(S') \sseq \Rset^n$
\form#204:$S' \sseq \Rset^m$
\form#205:\[ \phi^{-1}(S') \defeq \bigl\{\, \vect{v} \in \Rset^n \bigm| \exists \vect{w} \in S' \st (\vect{v}, \vect{w}) \in \phi \,\bigr\}. \]
\form#206:$n = m$
\form#207:$\ell \in \Nset$
\form#208:\[ \forall \vect{v} \in \Rset^n, \vect{w} \in \Rset^m \itc (\vect{v}, \vect{w}) \in \phi \iff \bigland_{i=1}^{\ell} \bigl( \langle \vect{c}_i, \vect{w} \rangle \relsym_i \langle \vect{a}_i, \vect{v} \rangle + b_i \bigr), \]
\form#209:$\vect{a}_i \in \Rset^n$
\form#210:$\vect{c}_i \in \Rset^m$
\form#211:$b_i \in \Rset$
\form#212:$\mathord{\relsym}_i \in \{ <, \leq, =, \geq, > \}$
\form#213:$i = 1, \ldots, \ell$
\form#214:$A \in \Rset^m \times \Rset^n$
\form#215:$\vect{b} \in \Rset^m$
\form#216:\[ \forall \vect{v} \in \Rset^n, \vect{w} \in \Rset^m \itc (\vect{v}, \vect{w}) \in \phi \iff \vect{w} = A\vect{v} + \vect{b}. \]
\form#217:$<$
\form#218:$>$
\form#219:$\reld{\phi}{\Rset^n}{\Rset^n}$
\form#220:$\vect{x} = (x_0, \ldots, x_{n-1})^\transpose$
\form#221:$\vect{x}' = (x'_0, \ldots, x'_{n-1})^\transpose$
\form#222:$x'_i$
\form#223:$x'_i = x_i$
\form#224:$\reld{\phi}{\Rset^3}{\Rset^3}$
\form#225:$x'_0 - x'_2 \geq 2 x_0 - x_1$
\form#226:$x'_1$
\form#227:\[ \forall \vect{v} \in \Rset^3, \vect{w} \in \Rset^3 \itc (\vect{v}, \vect{w}) \in \phi \iff (w_0 - w_2 \geq 2 v_0 - v_1) \land (w_1 = v_1). \]
\form#228:$x'_0 + 0 \cdot x'_1 - x'_2 \geq 2 x_0 - x_1$
\form#229:$x'_k$
\form#230:$\langle \vect{a}, \vect{x} \rangle + b$
\form#231:$\fund{\phi = \bigl(x'_k = \langle \vect{a}, \vect{x} \rangle + b\bigr)} {\Rset^n}{\Rset^n}$
\form#232:\[ \forall \vect{v} \in \Rset^n \itc \phi(\vect{v}) = A\vect{v} + \vect{b}, \]
\form#233:\[ A = \begin{pmatrix} 1 & & 0 & 0 & \cdots & \cdots & 0 \\ & \ddots & & \vdots & & & \vdots \\ 0 & & 1 & 0 & \cdots & \cdots & 0 \\ a_0 & \cdots & a_{k-1} & a_k & a_{k+1} & \cdots & a_{n-1} \\ 0 & \cdots & \cdots & 0 & 1 & & 0 \\ \vdots & & & \vdots & & \ddots & \\ 0 & \cdots & \cdots & 0 & 0 & & 1 \end{pmatrix}, \qquad \vect{b} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b \\ 0 \\ \vdots \\ 0 \end{pmatrix} \]
\form#234:$a_i$
\form#235:$b$
\form#236:$(k+1)$
\form#237:$A$
\form#238:$\vect{b}$
\form#239:$(v_0, \ldots, v_{n-1})^\transpose$
\form#240:\[ \Bigl(v_0, \ldots, \bigl(\textstyle{\sum_{i=0}^{n-1}} a_i v_i + b\bigr), \ldots, v_{n-1}\Bigr)^\transpose. \]
\form#241:$x'_k = \langle \vect{a}, \vect{x} \rangle + b$
\form#242:$\bigl\{ (0, 0)^\transpose, (0, 3)^\transpose, (3, 0)^\transpose, (3, 3)^\transpose \bigr\}$
\form#243:$x_0$
\form#244:$x_0 + 2 x_1 + 4$
\form#245:$k = 0$
\form#246:$a_0 = 1, a_1 = 2, b = 4$
\form#247:$\bigl\{ (4, 0)^\transpose, (10, 3)^\transpose, (7, 0)^\transpose, (13, 3)^\transpose \bigr\}$
\form#248:$x_0 - 2 x_1$
\form#249:$x_1$
\form#250:$a_0 = 0, a_1 = 1, b = 0$
\form#251:$(1, 0)^\transpose$
\form#252:$a_k$
\form#253:$\mathrm{lb} = \langle \vect{a}, \vect{x} \rangle + b$
\form#254:$\mathrm{ub} = \langle \vect{c}, \vect{x} \rangle + d$
\form#255:$\phi = (\mathrm{lb} \leq x'_k \leq \mathrm{ub})$
\form#256:\[ \forall \vect{v} \in \Rset^n, \vect{w} \in \Rset^n \itc (\vect{v}, \vect{w}) \in \phi \iff \bigl( \langle \vect{a}, \vect{v} \rangle + b \leq w_k \leq \langle \vect{c}, \vect{v} \rangle + d \bigr) \land \Bigl( \bigland_{0 \leq i < n, i \neq k} w_i = v_i \Bigr). \]
\form#257:$\phi = (\mathrm{lhs}' \relsym \mathrm{rhs})$
\form#258:$\mathrm{lhs} = \langle \vect{c}, \vect{x} \rangle + d$
\form#259:$\mathrm{rhs} = \langle \vect{a}, \vect{x} \rangle + b$
\form#260:$\mathord{\relsym} \in \{ <, \leq, =, \geq, > \}$
\form#261:\[ \forall \vect{v} \in \Rset^n, \vect{w} \in \Rset^n \itc (\vect{v}, \vect{w}) \in \phi \iff \bigl( \langle \vect{c}, \vect{w} \rangle + d \relsym \langle \vect{a}, \vect{v} \rangle + b \bigr) \land \Bigl( \bigland_{0 \leq i < n, c_i = 0} w_i = v_i \Bigr). \]
\form#262:$\mathrm{lhs} = x_k$
\form#263:$x'_k = \mathrm{rhs}$
\form#264:$\mathrm{lhs}$
\form#265:$\mathrm{rhs}$
\form#266:$\mathrm{lhs}' \leq \mathrm{rhs}$
\form#267:$\mathrm{rhs}' \geq \mathrm{lhs}$
\form#268:$\cQ \in \Pset_n$
\form#269:$i \in \{ 0, \ldots, n-1 \}$
\form#270:\[ \cQ = \bigl\{\, \vect{w} \in \Rset^n \bigm| \exists \vect{v} \in \cP \st \forall j \in \{0, \ldots, n-1\} \itc j \neq i \implies w_j = v_j \,\bigr\}. \]
\form#271:$\cP, \cQ \in \Pset_n$
\form#272:$ \cP \nearrow \cQ$
\form#273:\[ \bigl\{\, \vect{p} + \lambda \vect{q} \in \Rset^n \bigm| \vect{p} \in \cP, \vect{q} \in \cQ, \lambda \in \nonnegRset \,\bigr\}. \]
\form#274:$\cP,\cQ \in \CPset_n$
\form#275:$\cP, \cQ, \cR \in \Pset_n$
\form#276:$\cR$
\form#277:$\cR \inters \cQ = \cP \inters \cQ$
\form#278:$\cR \Sseq \cP$
\form#279:$r \leq p$
\form#280:$r$
\form#281:$p$
\form#282:$ c = \bigl( \langle \vect{a}, \vect{x} \rangle \relsym b \bigr) $
\form#283:$c$
\form#284:$\cP \inters \cQ = \emptyset$
\form#285:$\cP \inters \cQ \neq \emptyset$
\form#286:$\cP \inters \cQ \subset \cP$
\form#287:$\cP \sseq \cQ$
\form#288:$\cP \sseq \cH$
\form#289:$\cH$
\form#290:$g$
\form#291:$\cP \widen \cQ$
\form#292:$\cP, \cQ \in \CPset_n$
\form#293:$\cP \Sseq \cP \widen \cQ$
\form#294:$\cQ \sseq \cP$
\form#295:$\cP = \cQ$
\form#296:$k$
\form#297:$\mathord{\relsym} \in \{ =, \geq, >\}$
\form#298:$k \in \{ 0, \ldots, i-1, i+1, \ldots, n-1 \}$
\form#299:$a_k = 0$
\form#300:$x = r$
\form#301:$x \leq r$
\form#302:$x \geq r$
\form#303:$x < r$
\form#304:$x > r$
\form#305:$r \in \Rset$
\form#306:$\cB$
\form#307:$\vect{e}_i = (0, \ldots, 1, \ldots, 0)^\transpose$
\form#308:$\langle \vect{e}_i, \vect{x} \rangle \relsym b$
\form#309:$\mathord{\relsym}$
\form#310:$\mathord{\geq}$
\form#311:$\mathord{>}$
\form#312:$\langle\vect{e}_i,\vect{x}\rangle \relsym b$
\form#313:$\mathord{\leq}$
\form#314:$\mathord{<}$
\form#315:$\{-2, -1, 0, 1, 2\}$
\form#316:$\mathord{\relsym} \in \{ =, \geq\}$
\form#317:$i, j \in \{ 0, \ldots, n-1 \}$
\form#318:$a_i, a_j \in \{ -1, 0, 1 \}$
\form#319:$a_i \neq a_j$
\form#320:$k \notin \{ i, j \}$
\form#321:$a, b, f \in \Rset$
\form#322:$a \equiv_f b$
\form#323:$\exists \mu \in \Zset \st a - b = \mu f$
\form#324:$\Sset \in \{ \Qset, \Rset \}$
\form#325:$\vect{a} \in \Sset^n \setdiff \{\vect{0}\}$
\form#326:$b, f \in \Sset$
\form#327:$\langle \vect{a}, \vect{x} \rangle \equiv_f b$
\form#328:$\Sset^n$
\form#329:\[ \bigl\{\, \vect{v} \in \Rset^n \bigm| \exists \mu \in \Zset \st \langle \vect{a}, \vect{v} \rangle = b + \mu f \,\bigr\}; \]
\form#330:$f \neq 0$
\form#331:$\langle \vect{a}, \vect{x} \rangle \equiv_0 b$
\form#332:$f = 0$
\form#333:$f$
\form#334:\[ \big\{\, \bigl(\langle \vect{a}, \vect{x} \rangle = b + \mu f\bigr) \bigm| \mu \in \Zset \,\bigr\}; \]
\form#335:$b \equiv_f 0$
\form#336:$\langle \vect{0}, \vect{x} \rangle \equiv_f b$
\form#337:$\cL \sseq \Rset^n$
\form#338:$\cL$
\form#339:$\Qset^n$
\form#340:$\cL = \emptyset$
\form#341:$\Gset_{n}$
\form#342:$\bigl\{\langle\vect{0}, \vect{x}\rangle \equiv_0 1\bigr\}$
\form#343:$0 = 1$
\form#344:$\bigl\{\langle\vect{a}, \vect{x}\rangle \equiv_2 0, \langle\vect{a}, \vect{x}\rangle \equiv_2 1\bigr\}$
\form#345:$\Gset_n$
\form#346:$\mu_1, \ldots, \mu_k \in \Zset$
\form#347:$\vect{v} = \sum_{j=1}^k \mu_j \vect{x}_j$
\form#348:$\inthull(S)$
\form#349:$\intaffinehull(S)$
\form#350:$\vect{p} \in \cL$
\form#351:$\vect{q} \in \Rset^n$
\form#352:$\vect{q} \neq \vect{0}$
\form#353:$\cL \neq \emptyset$
\form#354:$\vect{p} + \mu \vect{q} \in \cL$
\form#355:$\mu \in \Zset$
\form#356:$\vect{p} + \lambda \vect{l} \in \cL$
\form#357:$\lambda \in \Rset$
\form#358:$L, Q, P$
\form#359:\[ \cL = \linearhull(L) + \inthull(Q) + \intaffinehull(P) \]
\form#360:$\cL \in \Gset_n$
\form#361:$(L, Q, P)$
\form#362:$\cL = \ggen(L, Q, P)$
\form#363:$\cL = \ggen(L, Q, P) = \emptyset$
\form#364:$P \neq \emptyset$
\form#365:$\cL = \ggen(L, \emptyset, Q_{\vect{p}} \union P)$
\form#366:$\vect{p} \in P$
\form#367:$Q_{\vect{p}} = \{\, \vect{p} + \vect{q} \mid \vect{q} \in Q \,\}$
\form#368:$\cC'$
\form#369:$\card \cC \leq \card \cC'$
\form#370:$\cG = (L, Q, P)$
\form#371:$\cG' = (L', Q', P')$
\form#372:$\card L \leq \card L'$
\form#373:$\card Q + \card P \leq \card Q' + \card P'$
\form#374:$\pdim(\cG) = k$
\form#375:$0 \leq \pdim(\cG) \leq n$
\form#376:$x_k$
\form#377:$\mathrm{expr} = \langle \vect{a}, \vect{x} \rangle + b$
\form#378:$\bigl\{ (0, 0)^\transpose, (0, 3)^\transpose, (3, 0)^\transpose \bigr\}$
\form#379:$3x_0 + 2 x_1 + 1$
\form#380:$a_0 = 3, a_1 = 2, b = 1$
\form#381:$\cL_1$
\form#382:$\bigl\{ (1, 0)^\transpose, (7, 3)^\transpose, (10, 0)^\transpose \bigr\}$
\form#383:$(1, 0)$
\form#384:$(3, -3), (0, 9)$
\form#385:$\{x \equiv_3 1, x + y \equiv_9 1\}$
\form#386:$\cL_2$
\form#387:$x = y$
\form#388:$y$
\form#389:$\fund{\phi = (\mathrm{lhs}', \mathrm{rhs}, f)}{\Rset^n}{\Rset^n}$
\form#390:$f \in \Qset$
\form#391:\[ \forall \vect{v} \in \Rset^n, \vect{w} \in \Rset^n \itc (\vect{v}, \vect{w}) \in \phi \iff \bigl( \langle \vect{c}, \vect{w} \rangle + d \equiv_f \langle \vect{a}, \vect{v} \rangle + b \bigr) \land \Bigl( \bigland_{0 \leq i < n, c_i = 0} w_i = v_i \Bigr). \]
\form#392:$\mathrm{expr} = \bigl(\langle \vect{a}, \vect{x} \rangle + b\bigr)$
\form#393:$c, f \in \Rset$
\form#394:$\cg = ( \mathrm{expr} \equiv_f c )$
\form#395:$\mathrm{expr}$
\form#396:$\mathrm{val} = \langle \vect{a}, \vect{w} \rangle + b$
\form#397:$\vect{w} \in \cL$
\form#398:\[ \lvert\mathrm{val}\rvert = \min\Bigl\{\, \bigl\lvert\langle \vect{a}, \vect{v} \rangle + b \bigr\rvert \Bigm| \vect{v} \in \cL \,\Bigr\}. \]
\form#399:$( \mathrm{expr} = c )$
\form#400:$0$
\form#401:$\cL_1, \cL_2 \in \Gset_n$
\form#402:$ \cL_1 \nearrow \cL_2$
\form#403:\[ \bigl\{\, \vect{p} + \mu \vect{q} \in \Rset^n \bigm| \vect{p} \in \cL_1, \vect{q} \in \cL_2, \mu \in \Zset \,\bigr\}. \]
\form#404:$ \cg = \bigl( \langle \vect{a}, \vect{x} \rangle \equiv_f b \bigr) $
\form#405:$\cL_{\cg} = \gcon\bigl(\{\cg\}\bigr)$
\form#406:$\cg$
\form#407:$\cL \inters \cL_{\cg} = \emptyset$
\form#408:$\cL \inters \cL_{\cg} \neq \emptyset$
\form#409:$\cL \inters \cL_{\cg} \subset \cL$
\form#410:$\cL \sseq \cL_{\cg}$
\form#411:$\cL \inters \cQ = \emptyset$
\form#412:$\cL \inters \cQ \neq \emptyset$
\form#413:$\cL \inters \cQ \subset \cL$
\form#414:$\cL \sseq \cQ$
\form#415:$=$
\form#416:$J$
\form#417:$\{0, \ldots, n-1\}$
\form#418:$w$
\form#419:$R = \{r \in \Rset \mid 0 \leq r < 2^w\}$
\form#420:$R = \{r \in \Rset \mid -2^{w-1} \leq r < 2^{w-1}\}$
\form#421:$v_j$
\form#422:$j$
\form#423:$\cL'$
\form#424:$a \in R$
\form#425:$a$
\form#426:$\cL' = \cL$
\form#427:$a + z \in R$
\form#428:$z \in \Zset$
\form#429:$(0, \ldots, 0, v_j, 0, \ldots, 0)$
\form#430:$v_j = 1$
\form#431:$v_j = a \mod 2^w$
\form#432:$a \in \Rset$
\form#433:$a'$
\form#434:$a' = a \mod 2^w$
\form#435:$a'\in R$
\form#436:$v_j = 2^w$
\form#437:$\cL_1 \widen \cL_2$
\form#438:$\cL_1 \sseq \cL_2$
\form#439:$D$
\form#440:$\mathord{\entails}$
\form#441:$\mathord{\meet}$
\form#442:$\true$
\form#443:$\false$
\form#444:$\cS \in \wp(D)$
\form#445:$\false \notin \cS$
\form#446:$\forall d_1, d_2 \in \cS \itc d_1 \entails d_2 \implies d_1 = d_2$
\form#447:$\wpfn{D}{\entails}$
\form#448:$\fund{\nonredmap}{\wpf(D)}{\wpfn{D}{\entails}}$
\form#449:$\cS \in \wpf(D)$
\form#450:\[ \nonredmap(\cS) \defeq \cS \setdiff \{\, d \in \cS \mid d = \false \text{ or } \exists d' \in \cS \st d \sentails d' \,\}. \]
\form#451:$d \sentails d'$
\form#452:$d \entails d' \land d \ne d'$
\form#453:$\cS$
\form#454:$\nonredmap(\cS)$
\form#455:$\cS \neq \{ \false \}$
\form#456:$D_{\smallP}$
\form#457:$\mathord{\entailsP}$
\form#458:$\cS_1$
\form#459:$\cS_2 \in D_{\smallP}$
\form#460:$\cS_1 \entailsP \cS_2$
\form#461:\[ \forall d_1 \in \cS_1 \itc \exists d_2 \in \cS_2 \st d_1 \entails d_2. \]
\form#462:$\{\true\}$
\form#463:$ \nonredmap \bigl( \{\, d_1 \meet d_2 \mid d_1 \in \cS_1, d_2 \in \cS_2 \,\} \bigr) $
\form#464:$\nonredmap(\cS_1 \union \cS_2)$
\form#465:$\cS \in D_{\smallP}$
\form#466:$d \in D$
\form#467:$\nonredmap\bigl(\cS \union \{d\}\bigr)$
\form#468:$\cS_1 = \{ d_1, \ldots, d_m \}$
\form#469:$\cS_2 = \{ c_1, \ldots, c_n \}$
\form#470:$\cS = \{ s_1, \ldots, s_q \}$
\form#471:$\cS_2$
\form#472:$q \leq m$
\form#473:$s_k \in \cS$
\form#474:$d_i \in \cS_1$
\form#475:$c_j \in \cS_2$
\form#476:$s_k$
\form#477:$d_i$
\form#478:$c_j$
\form#479:$\cS_1, \cS_2$
\form#480:$\uplus$
\form#481:$c, d$
\form#482:$c \uplus d \neq c \union d$
\form#483:$i+1$
\form#484:\[ \sum_{i=0}^{n-1} a_i x_i + b \]
\form#485:$x_i$
\form#486:$4x - 2y - z + 14$
\form#487:$3$
\form#488:$1$
\form#489:$2$
\form#490:$\sum_{i=0}^{n-1} a_i x_i + b = 0$
\form#491:$\sum_{i=0}^{n-1} a_i x_i + b \geq 0$
\form#492:$\sum_{i=0}^{n-1} a_i x_i + b > 0$
\form#493:$3x + 5y - z = 0$
\form#494:$4x \geq 2y - 13$
\form#495:$4x > 2y - 13$
\form#496:$x - 5y + 3z \leq 4$
\form#497:$x - 5y + 3z > 4$
\form#498:$(0, 1)^\transpose \in \Rset^2$
\form#499:\[ \bigl\{\, (x, 0)^\transpose \in \Rset^2 \bigm| x \geq 0 \,\bigr\}, \]
\form#500:$\vect{l} = (a_0, \ldots, a_{n-1})^\transpose$
\form#501:$\vect{r} = (a_0, \ldots, a_{n-1})^\transpose$
\form#502:$\vect{p} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose$
\form#503:$\vect{c} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose$
\form#504:$d > 0$
\form#505:$x-y-z$
\form#506:$\vect{p} = (1, 0, 2)^\transpose \in \Rset^3$
\form#507:$\vect{0} \in \Rset^3$
\form#508:$\vect{0} \in \Rset^2$
\form#509:$\vect{0} \in \Rset^0$
\form#510:$\vect{p}$
\form#511:$\vect{q} = (-1.5, 3.2, 2.1)^\transpose \in \Rset^3$
\form#512:$\vect{c} = (1, 0, 2)^\transpose \in \Rset^3$
\form#513:$(a_0, \ldots, a_{n-1})^\transpose$
\form#514:$(a_0, 2 a_1, \ldots, (i+1)a_i, \ldots, n a_{n-1})^\transpose$
\form#515:$x + y = 1 \pmod{2}$
\form#516:$\Zset^2$
\form#517:$\cg = \sum_{i=0}^{n-1} a_i x_i + b = 0 \pmod m$
\form#518:$m \neq 0$
\form#519:$\pmod{1}$
\form#520:$4x = 2y - 13 \pmod{1}$
\form#521:$4x = 2y - 13 \pmod{2}$
\form#522:$x - 5y + 3z = 4 \pmod{5}$
\form#523:$2 e$
\form#524:$2x - 10y + 6z = 8 \pmod{5}$
\form#525:\[ \bigl\{\, (x, 0)^\transpose \in \Rset^2 \bigm| x \pmod{1}\ 0 \,\bigr\}, \]
\form#526:$x + y = 2$
\form#527:$\vect{q} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose$
\form#528:$\vect{p} = (1, -1, -1)^\transpose \in \Rset^3$
\form#529:$\vect{p1} = (-1.5, 3.2, 2.1)^\transpose \in \Rset^3$
\form#530:$\vect{q} = (1, 0, 2)^\transpose \in \Rset^3$
\form#531:$\perp$
\form#532:$M$
\form#533:$M-x'_i$
\form#534:$x'$
\form#535:$x'_i = M-x_i$
\form#536:$x_i = M-x'_i$
\form#537:$(x,y)$
\form#538:\[\left\{\begin{array}{l} y \geq 2x - 4\\ y \leq -x + p \end{array}\right.\]
\form#539:\[\left\{\begin{array}{l} M - y \geq 2M - 2x - 4\\ M - y \leq -M + x + p \end{array}\right.\]
\form#540:\[ \left\{\begin{array}{l} x'=M-\left\lfloor\frac{p+1}{3}\right\rfloor-1\\ y'=M-p+\left\lfloor\frac{p+1}{3}\right\rfloor+1 \end{array}\right. \]
\form#541:\[ \left\{\begin{array}{l} x=\left\lfloor\frac{p+1}{3}\right\rfloor+1\\ y=p-\left\lfloor\frac{p+1}{3}\right\rfloor-1 \end{array}\right. \]
\form#542:$x'_i-M$
\form#543:$x'_i = x_i+M$
\form#544:$x_i = x'_i-M$
\form#545:\[\left\{\begin{array}{l} y \geq -2x - 4\\ 2y \leq x + 2p \end{array}\right.\]
\form#546:\[\left\{\begin{array}{l} y' - M \geq -2x' + 2M - 4\\ 2y' - 2M \leq x' - M + 2p \end{array}\right.\]
\form#547:\[ \left\{\begin{array}{l} x'=M-\left\lfloor\frac{2p+3}{5}\right\rfloor-1\\ y'=M+2\left\lfloor\frac{2p+3}{5}\right\rfloor-2 \end{array}\right. \]
\form#548:\[ \left\{\begin{array}{l} x=-\left\lfloor\frac{2p+3}{5}\right\rfloor-1\\ y=2\left\lfloor\frac{2p+3}{5}\right\rfloor-2 \end{array}\right. \]
\form#549:$p^+-p^-$
\form#550:$p^+$
\form#551:$p^-$
\form#552:$p_i$
\form#553:$p^+_i-p^-$
\form#554:$-p^-$
\form#555:$x_1, x_2, \dots, x_n$
\form#556:$p_1, p_2, \dots, p_m$
\form#557:$f(x_2, \dots, x_n, p_1, \dots, p_m)$
\form#558:$x_1 \geq f(x_2, \dots, x_n, p_1, \dots, p_m)$
\form#559:$R^0$
\form#560:$\{ 2 \} \sseq \Rset$
\form#561:\[ \bigl\{\, (2, y)^\transpose \in \Rset^2 \bigm| y \in \Rset \,\bigr\}. \]
\form#562:$\bigl\{ (2, 0)^\transpose \bigr\} \sseq \Rset^2$
\form#563:$x+4$
\form#564:$x+y$
\form#565:$x-y$
\form#566:$\bigl\{ (3, 2)^\transpose \bigr\} \sseq \Rset^2$
\form#567:$\bigl\{(3, 0)^\transpose \bigr\} \sseq \Rset^2$
\form#568:$x+3$
\form#569:$(x, y)$
\form#570:$x=y$
\form#571:$x=-y$
\form#572:$\pm x_i \leq k$
\form#573:$x_i - x_j \leq k$
\form#574:$+\infty$
\form#575:\[ a_i x_i - a_j x_j \relsym b \]
\form#576:$\mathord{\relsym} \in \{ \leq, =, \geq \}$
\form#577:$a_j$
\form#578:$a_i = 0$
\form#579:$a_j = 0$
\form#580:$a_i = a_j$
\form#581:$3x - 3y \leq 1$
\form#582:$x - y \leq 1$
\form#583:$x - y \leq \frac{1}{3}$
\form#584:$x - y \leq k$
\form#585:$k > \frac{1}{3}$
\form#586:$\frac{1}{3}$
\form#587:$3x - y \leq 1$
\form#588:$\Rset^3$
\form#589:\[ ax_i + bx_j \leq k \]
\form#590:$a, b \in \{-1, 0, 1\}$
\form#591:\[ \pm a_i x_i \pm a_j x_j \relsym b \]
\form#592:$3x + 3y \leq 1$
\form#593:$x + y \leq 1$
\form#594:$x + y \leq \frac{1}{3}$
\form#595:$x + y \leq k$
\form#596:$D_1$
\form#597:$D_2$
\form#598:$\fund{\gamma_1}{D_1}{\Rset^n}$
\form#599:$\fund{\gamma_2}{D_2}{\Rset^n}$
\form#600:$D = D_1 \times D_2$
\form#601:$\fund{\gamma}{D}{\Rset^n}$
\form#602:$d = (d_1, d_2) \in D$
\form#603:\[ \gamma(d) = \gamma_1(d_1) \inters \gamma_2(d_2). \]
\form#604:$d = (G, P) \in (\Gset \times \Pset)$
\form#605:$G$
\form#606:$-\infty$
\form#607:$ y \cdot 2^\mathtt{exp} $
\form#608:$ y / 2^\mathtt{exp} $
\form#609:$15 \cdot 10^2 = 1500$
\form#610:$5$
\form#611:$3/580000$
\form#612:$713/10$
\form#613:$-1929/15625$
\form#614:$11/50$
\form#615:$-220001/100$
\form#616:$35$
\form#617:$44027$
\form#618:$7/2$
\form#619:$2000$
\form#620:$1024$
\form#621:$1088$
\form#622:$9073863231288$
\form#623:$17/8$
\form#624:$482$
\form#625:$256$
\form#626:$\epsilon$
\form#627:$a_n$
\form#628:$c = \bigl(\sum_{i=0}^{n-1} a_i x_i + b \relsym 0\bigr)$
\form#629:$\sum_{i=0}^{n-1} a_i x_i + b$
\form#630:$g = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose$
\form#631:$d = 1$
\form#632:$\sum_{i=0}^{n-1} a_i x_i$
\form#633:$cg = \bigl(\sum_{i=0}^{n-1} a_i x_i + b = 0 \pmod{m}\bigr)$
\form#634:$r \times c$
\form#635:$(r+n) \times c$
\form#636:$\genfrac{(}{)}{0pt}{}{M}{0}$
\form#637:$r \times (c+n)$
\form#638:$(M \, 0)$
\form#639:$(r+n) \times (c+m)$
\form#640:$\bigl(\genfrac{}{}{0pt}{}{M}{0} \genfrac{}{}{0pt}{}{0}{0}\bigr)$
\form#641:$(r+1) \times c$
\form#642:$\genfrac{(}{)}{0pt}{}{M}{y}$
\form#643:$\times$
\form#644:$M \in \Rset^r \times \Rset^c$
\form#645:$N \in \Rset^{r+n} \times \Rset^{c+n}$
\form#646:$N = \bigl(\genfrac{}{}{0pt}{}{0}{M}\genfrac{}{}{0pt}{}{J}{o}\bigr)$
\form#647:$n \times n$
\form#648:$\sum_{i = 0}^{n - 1} a_i x_i + b$
\form#649:${a'}_{ij}$
\form#650:$a_{ij}$
\form#651:\[ {a'}_{ij} = \begin{cases} a_{ij} * \mathrm{denominator} + a_{iv} * \mathrm{expr}[j] \quad \text{for } j \neq v; \\ \mathrm{expr}[v] * a_{iv} \quad \text{for } j = v. \end{cases} \]
\form#652:$0 \leq 1$
\form#653:$\sum_{i=0}^{n-1} 0 x_i + 0 = 0$
\form#654:$\sum_{i=0}^{n-1} 0 x_i + b \geq 0$
\form#655:$b \geq 0$
\form#656:$\sum_{i=0}^{n-1} 0 x_i + b > 0$
\form#657:$b > 0$
\form#658:$\sum_{i=0}^{n-1} 0 x_i + b = 0$
\form#659:$b \neq 0$
\form#660:$b < 0$
\form#661:$b \leq 0$
\form#662:$\epsilon \geq 0$
\form#663:$\epsilon \leq 1$
\form#664:\[ \frac{\sum_{i = 0}^{n - 1} a_i x_i + b} {\mathrm{denominator}}. \]
\form#665:$L_\infty$
\form#666:$ e_1 = e_2 $
\form#667:$ e_1 = e_2 \pmod{0}$
\form#668:$(r+dims) \times (c+dims)$
\form#669:$\bigl(\genfrac{}{}{0pt}{}{0}{A} \genfrac{}{}{0pt}{}{B}{A}\bigr)$
\form#670:$B$
\form#671:$dims \times dims$
\form#672:$\bigl(\genfrac{}{}{0pt}{}{0}{1} \genfrac{}{}{0pt}{}{1}{0}\bigr)$
\form#673:$e1 = e2 \pmod{1}$
\form#674:$e = n \pmod{1}$
\form#675:$ e_1 = e_2 \pmod{m}$
\form#676:$ e_1 = e_2 \pmod{mk}$
\form#677:$\sum_{i=0}^{n-1} 0 x_i + 0 == 0$
\form#678:$\sum_{i=0}^{n-1} 0 x_i + b \%= 0 / m$
\form#679:$b = 0 \pmod{m}$
\form#680:$\sum_{i=0}^{n-1} 0 x_i + b == 0$
\form#681:$b \neq 0 \pmod{m}$
\form#682:$0 = 1 \pmod{1}$
\form#683:$0 = 1 \pmod{0}$
\form#684:$n = e \pmod{1}$
\form#685:$\bigl(\genfrac{}{}{0pt}{}{A}{0} \genfrac{}{}{0pt}{}{0}{B}\bigr)$
\form#686:$\bigl(\genfrac{}{}{0pt}{}{1}{0} \genfrac{}{}{0pt}{}{0}{1}\bigr)$
\form#687:$[\mathrm{first}, \mathrm{last})$
\form#688:$\frac{\mathit{expr}}{\mathit{den}}$
\form#689:$f_i(x,p) = 0 ; 1 \leq i \leq n$
\form#690:$f_i(x,p) \geq 0 ; 1 \leq i \leq n$
\form#691:$\sum\limits_{i=1}^n f_i(x,p) \leq 0$
\form#692:$c=s_{*j}\frac{t_{ik}}{s_{ij}}$
\form#693:$c'=s_{*j'}\frac{t_{i'k}}{s_{i'j'}}$
\form#694:$s_{*j}$
\form#695:$s$
\form#696:$s_{*j'}$
\form#697:$j'$
\form#698:$(i,j)$
\form#699:$c'$
\form#700:$(i',j')$
\form#701:$-c$
\form#702:$-c'$
\form#703:$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}$
\form#704:$\mathrm{lhs}' \relsym \mathrm{rhs}$
\form#705:$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}} \leq \mathrm{var}' \leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}$
\form#706:\[ \bigl\{\, (x, y, z)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cP \,\bigr\}. \]
\form#707:\[ \bigl\{\, (x, y, 0)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cP \,\bigr\}. \]
\form#708:$f(k)$
\form#709:$\dots$
\form#710:$\Rset^0 = \{\cdot\}$
\form#711:\[ \begin{cases} sat\_c[i][j] = 0, \quad \text{if } G[i] \cdot C^\mathrm{T}[j] = 0; \\ sat\_c[i][j] = 1, \quad \text{if } G[i] \cdot C^\mathrm{T}[j] > 0. \end{cases} \]
\form#712:\[ \begin{cases} sat\_g[i][j] = 0, \quad \text{if } C[i] \cdot G^\mathrm{T}[j] = 0; \\ sat\_g[i][j] = 1, \quad \text{if } C[i] \cdot G^\mathrm{T}[j] > 0. \end{cases} \]
\form#713:$\frac{num}{den}$
\form#714:$\frac{d_{j}}{\|\Delta x^{j} \|}$
\form#715:\[ \|\Delta x^{j} \| = \left( 1+\sum_{i=1}^{m} \alpha_{ij}^2 \right)^{\frac{1}{2}}. \]
\form#716:$\alpha$
\form#717:\[ \{\, a \in \mathtt{to} \mid \exists b \in \mathtt{x} \st a \mathrel{\mathtt{rel}} b \,\}. \]
\form#718:\[ \{\, a \in \mathtt{to} \mid \forall b \in \mathtt{x} \itc a \mathrel{\mathtt{rel}} b \,\}. \]
\form#719:$\mathrm{var}' = \frac{\mathrm{expr}}{\mathrm{denominator}} \pmod{\mathrm{modulus}}$
\form#720:$\mathrm{lhs}' = \mathrm{rhs} \pmod{\mathrm{modulus}}$
\form#721:$\cL \sseq \Rset^2$
\form#722:\[ \bigl\{\, (x, y, z)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cL \,\bigr\}. \]
\form#723:\[ \bigl\{\, (x, y, 0)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cL \,\bigr\}. \]
\form#724:$\{3x \equiv_3 0, 4x + y \equiv_3 1\}$
\form#725:$\{3x \equiv_3 0, x + y \equiv_3 1\}$
\form#726:$\mathtt{y} \Delta \mathtt{x}$
\form#727:$\cB \sseq \Rset^2$
\form#728:\[ \bigl\{\, (x, y, z)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cB \,\bigr\}. \]
\form#729:\[ \bigl\{\, (x, y, 0)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cB \,\bigr\}. \]
\form#730:$B \sseq \Rset^n$
\form#731:$D \sseq \Rset^m$
\form#732:$R \sseq \Rset^{n+m}$
\form#733:\[ R \defeq \Bigl\{\, (x_1, \ldots, x_n, y_1, \ldots, y_m)^\transpose \Bigm| (x_1, \ldots, x_n)^\transpose \in B, (y_1, \ldots, y_m)^\transpose \in D \,\Bigl\}. \]
\form#734:$I$
\form#735:$d$
\form#736:$n/d$
\form#737:$0/1$
\form#738:$\mathrm{var} \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}$
\form#739:$\cO \sseq \Rset^2$
\form#740:\[ \bigl\{\, (x, y, z)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cO \,\bigr\}. \]
\form#741:\[ \bigl\{\, (x, y, 0)^\transpose \in \Rset^3 \bigm| (x, y)^\transpose \in \cO \,\bigr\}. \]
\form#742:$O(n^2)$
\form#743:\[ \mathit{ps} = \bigl\{ \{ x \geq 0 \}, \{ x \leq 0 \} \bigr\}, \]
\form#744:$\mathit{ps}$
\form#745:$\cP \uplus \cQ \neq \cP \union \cQ$
\form#746:$ x'_1, \ldots, x'_n $
\form#747:$ 0, \ldots, n-1 $
\form#748:$ x_1, \ldots, x_n $
\form#749:$ n, \ldots, 2n-1 $
\form#750:$ n+1 $
\form#751:$ \mu_0 + \sum_{i=1}^n \mu_i x_i $
\form#752:$ \mu_0, \mu_1, \ldots, \mu_n $
\form#753:$ n, 0, \ldots, n-1 $