Sophie

Sophie

distrib > Fedora > 13 > i386 > by-pkgid > 5764c67416561ab82b35afcf9c650e17 > files > 941

GMT-doc-4.5.2-1.fc13.noarch.rpm

<!-- Creator     : groff version 1.19.2 -->
<!-- CreationDate: Thu Jan 14 08:19:33 2010 -->
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta name="generator" content="groff -Thtml, see www.gnu.org">
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta name="Content-Style" content="text/css">
<style type="text/css">
       p     { margin-top: 0; margin-bottom: 0; }
       pre   { margin-top: 0; margin-bottom: 0; }
       table { margin-top: 0; margin-bottom: 0; }
</style>
<title>GRDGRADIENT</title>

</head>
<body bgcolor="#ffffff">

<h1 align=center>GRDGRADIENT</h1>

<a href="#NAME">NAME</a><br>
<a href="#SYNOPSIS">SYNOPSIS</a><br>
<a href="#DESCRIPTION">DESCRIPTION</a><br>
<a href="#OPTIONS">OPTIONS</a><br>
<a href="#HINTS">HINTS</a><br>
<a href="#GRID FILE FORMATS">GRID FILE FORMATS</a><br>
<a href="#EXAMPLES">EXAMPLES</a><br>
<a href="#REFERENCES">REFERENCES</a><br>
<a href="#SEE ALSO">SEE ALSO</a><br>

<hr>


<a name="NAME"></a>
<h2>NAME</h2>


<p style="margin-left:11%; margin-top: 1em">grdgradient
&minus; Compute directional derivative or gradient from 2-D
grid file representing z(x,y)</p>

<a name="SYNOPSIS"></a>
<h2>SYNOPSIS</h2>



<p style="margin-left:11%; margin-top: 1em"><b>grdgradient</b>
<i>in_grdfile</i> <b>&minus;G</b><i>out_grdfile</i> [
<b>&minus;A</b><i>azim</i>[/<i>azim2</i>] ] [
<b>&minus;D</b>[<b>c</b>][<b>o</b>][<b>n</b>] ] [
<b>&minus;E</b>[<b>s|p</b>]<i>azim/elev</i>[/<i>ambient</i>/<i>diffuse</i>/<i>specular</i>/<i>shine</i>]
] [ <b>&minus;L</b><i>flag</i> ] [ <b>&minus;M</b> ] [
<b>&minus;N</b>[<b>e</b>][<b>t</b>][<i>amp</i>][/<i>sigma</i>[/<i>offset</i>]]
] [ <b>&minus;S</b><i>slopefile</i> ] [ <b>&minus;V</b>
]</p>

<a name="DESCRIPTION"></a>
<h2>DESCRIPTION</h2>



<p style="margin-left:11%; margin-top: 1em"><b>grdgradient</b>
may be used to compute the directional derivative in a given
direction (<b>&minus;A</b>), or the direction
(<b>&minus;S</b>) [and the magnitude (<b>&minus;D</b>)] of
the vector gradient of the data. <br>
Estimated values in the first/last row/column of output
depend on boundary conditions (see <b>&minus;L</b>). <i><br>
in_grdfile</i></p>

<p style="margin-left:22%;">2-D grid file from which to
compute directional derivative. (See GRID FILE FORMATS
below).</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;G</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Name of the output
grid file for the directional derivative. (See GRID FILE
FORMATS below).</p></td>
</table>

<a name="OPTIONS"></a>
<h2>OPTIONS</h2>


<p style="margin-left:11%; margin-top: 1em">No space
between the option flag and the associated arguments.</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;A</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Azimuthal direction
for a directional derivative; <i>azim</i> is the angle in
the x,y plane measured in degrees positive clockwise from
north (the +y direction) toward east (the +x direction). The
negative of the directional derivative,
&minus;[dz/dx*sin(<i>azim</i>) + dz/dy*cos(<i>azim</i>)], is
found; negation yields positive values when the slope of
z(x,y) is downhill in the <i>azim</i> direction, the correct
sense for shading the illumination of an image (see
<b><A HREF="grdimage.html">grdimage</A></b> and <b><A HREF="grdview.html">grdview</A></b>) by a light source above
the x,y plane shining from the <i>azim</i> direction.
Optionally, supply two azimuths,
<b>&minus;A</b><i>azim</i>/<i>azim2</i>, in which case the
gradients in each of these directions are calculated and the
one larger in magnitude is retained; this is useful for
illuminating data with two directions of lineated
structures, e.g. <b>&minus;A</b><i>0</i>/<i>270</i>
illuminates from the north (top) and west (left).</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;D</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Find the direction
of the gradient of the data. By default, the directions are
measured clockwise from north, as <i>azim</i> in
<b>&minus;A</b> above. Append <b>c</b> to use conventional
Cartesian angles measured counterclockwise from the positive
x (east) direction. Append <b>o</b> to report orientations
(0-180) rather than directions (0-360). Append <b>n</b> to
add 90 degrees to all angles (e.g., to give orientation of
lineated features).</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;E</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Compute Lambertian
radiance appropriate to use with <b><A HREF="grdimage.html">grdimage</A></b> and
<b><A HREF="grdview.html">grdview</A></b>. The Lambertian Reflection assumes an ideal
surface that reflects all the light that strikes it and the
surface appears equally bright from all viewing directions.
<i>azim</i> and <i>elev</i> are the azimuth and elevation of
light vector. Optionally, supply <i>ambient diffuse specular
shine</i> which are parameters that control the reflectance
properties of the surface. Default values are: <i>0.55</i>/
<i>0.6</i>/<i>0.4</i>/<i>10</i> To leave some of the values
untouched, specify = as the new value. For example
<b>&minus;E</b><i>60</i>/<i>30</i>/<i>=</i>/<i>0.5</i> sets
the <i>azim elev</i> and <i>diffuse</i> to 60, 30 and 0.5
and leaves the other reflectance parameters untouched.
Append <b>s</b> to use a simpler Lambertian algorithm. Note
that with this form you only have to provide the azimuth and
elevation parameters. Append <b>p</b> to use the Peucker
piecewise linear approximation (simpler but faster
algorithm; in this case the <i>azim</i> and <i>elev</i> are
hardwired to 315 and 45 degrees. This means that even if you
provide other values they will be ignored.)</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;L</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Boundary condition
<i>flag</i> may be <i>x</i> or <i>y</i> or <i>xy</i>
indicating data is periodic in range of x or y or both, or
<i>flag</i> may be <i>g</i> indicating geographical
conditions (x and y are lon and lat). [Default uses
&quot;natural&quot; conditions (second partial derivative
normal to edge is zero).]</p></td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;M</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">By default the
units of <b>grdgradient</b> are in units_of_z/
units_of_dx_and_dy. However, the user may choose this option
to convert dx,dy in degrees of longitude,latitude into
meters, so that the units of <b>grdgradient</b> are in
z_units/meter.</p> </td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;N</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Normalization.
[Default: no normalization.] The actual gradients <i>g</i>
are offset and scaled to produce normalized gradients
<i>gn</i> with a maximum output magnitude of <i>amp</i>. If
<i>amp</i> is not given, default <i>amp</i> = 1. If
<i>offset</i> is not given, it is set to the average of
<i>g</i>. <b>&minus;N</b> yields <i>gn</i> = <i>amp</i> *
(<i>g</i> - <i>offset</i>)/max(abs(<i>g</i></p></td>
</table>

<p style="margin-left:22%;">- <i>offset</i>)).
<b>&minus;Ne</b> normalizes using a cumulative Laplace
distribution yielding <i>gn</i> = <i>amp</i> * (1.0 -
exp(sqrt(2) * (<i>g</i> - <i>offset</i>)/ <i>sigma</i>))
where <i>sigma</i> is estimated using the L1 norm of
(<i>g</i> - <i>offset</i>) if it is not given.
<b>&minus;Nt</b> normalizes using a cumulative Cauchy
distribution yielding <i>gn</i> = (2 * <i>amp</i> / PI) *
atan( (<i>g</i> - <i>offset</i>)/ <i>sigma</i>) where
<i>sigma</i> is estimated using the L2 norm of (<i>g</i> -
<i>offset</i>) if it is not given.</p>

<table width="100%" border=0 rules="none" frame="void"
       cellspacing="0" cellpadding="0">
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;S</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Name of output grid
file with scalar magnitudes of gradient vectors. Requires
<b>&minus;D</b>.</p> </td>
<tr valign="top" align="left">
<td width="11%"></td>
<td width="3%">



<p style="margin-top: 1em" valign="top"><b>&minus;V</b></p> </td>
<td width="8%"></td>
<td width="78%">


<p style="margin-top: 1em" valign="top">Selects verbose
mode, which will send progress reports to stderr [Default
runs &quot;silently&quot;].</p></td>
</table>

<a name="HINTS"></a>
<h2>HINTS</h2>


<p style="margin-left:11%; margin-top: 1em">If you
don&rsquo;t know what OPT(N) options to use to make an
intensity file for <b><A HREF="grdimage.html">grdimage</A></b> or <b><A HREF="grdview.html">grdview</A></b>, a good
first try is <b>&minus;Ne</b>0.6.</p>

<p style="margin-left:11%; margin-top: 1em">If you want to
make several illuminated maps of subregions of a large data
set, and you need the illumination effects to be consistent
across all the maps, use the <b>&minus;N</b> option and
supply the same value of <i>sigma</i> and <i>offset</i> to
<b>grdgradient</b> for each map. A good guess is
<i>offset</i> = 0 and <i>sigma</i> found by <b>grdinfo
&minus;L2</b> or <b>&minus;L1</b> applied to an unnormalized
gradient grd.</p>

<p style="margin-left:11%; margin-top: 1em">If you simply
need the <i>x</i>- or <i>y</i>-derivatives of the grid, use
<b><A HREF="grdmath.html">grdmath</A></b>.</p>

<a name="GRID FILE FORMATS"></a>
<h2>GRID FILE FORMATS</h2>


<p style="margin-left:11%; margin-top: 1em">By default
<b><A HREF="GMT.html">GMT</A></b> writes out grid as single precision floats in a
COARDS-complaint netCDF file format. However, <b><A HREF="GMT.html">GMT</A></b> is
able to produce grid files in many other commonly used grid
file formats and also facilitates so called
&quot;packing&quot; of grids, writing out floating point
data as 2- or 4-byte integers. To specify the precision,
scale and offset, the user should add the suffix
<b>=</b><i>id</i>[<b>/</b><i>scale</i><b>/</b><i>offset</i>[<b>/</b><i>nan</i>]],
where <i>id</i> is a two-letter identifier of the grid type
and precision, and <i>scale</i> and <i>offset</i> are
optional scale factor and offset to be applied to all grid
values, and <i>nan</i> is the value used to indicate missing
data. When reading grids, the format is generally
automatically recognized. If not, the same suffix can be
added to input grid file names. See <b><A HREF="grdreformat.html">grdreformat</A></b>(1)
and Section 4.17 of the GMT Technical Reference and Cookbook
for more information.</p>

<p style="margin-left:11%; margin-top: 1em">When reading a
netCDF file that contains multiple grids, <b><A HREF="GMT.html">GMT</A></b> will
read, by default, the first 2-dimensional grid that can find
in that file. To coax <b><A HREF="GMT.html">GMT</A></b> into reading another
multi-dimensional variable in the grid file, append
<b>?</b><i>varname</i> to the file name, where
<i>varname</i> is the name of the variable. Note that you
may need to escape the special meaning of <b>?</b> in your
shell program by putting a backslash in front of it, or by
placing the filename and suffix between quotes or double
quotes. The <b>?</b><i>varname</i> suffix can also be used
for output grids to specify a variable name different from
the default: &quot;z&quot;. See <b><A HREF="grdreformat.html">grdreformat</A></b>(1) and
Section 4.18 of the GMT Technical Reference and Cookbook for
more information, particularly on how to read splices of 3-,
4-, or 5-dimensional grids.</p>

<a name="EXAMPLES"></a>
<h2>EXAMPLES</h2>


<p style="margin-left:11%; margin-top: 1em">To make a file
for illuminating the data in geoid.grd using exp- normalized
gradients imitating light sources in the north and west
directions:</p>


<p style="margin-left:11%; margin-top: 1em"><b>grdgradient</b>
geoid.grd <b>&minus;A</b>0/270 <b>&minus;G</b>gradients.grd
<b>&minus;Ne</b>0.6 <b>&minus;V</b></p>

<p style="margin-left:11%; margin-top: 1em">To find the
azimuth orientations of seafloor fabric in the file
topo.grd:</p>


<p style="margin-left:11%; margin-top: 1em"><b>grdgradient</b>
topo.grd <b>&minus;Dno &minus;G</b>azimuths.grd
<b>&minus;V</b></p>

<a name="REFERENCES"></a>
<h2>REFERENCES</h2>


<p style="margin-left:11%; margin-top: 1em">Horn, B.K.P.,
Hill-Shading and the Reflectance Map, Proceedings of the
IEEE, Vol. 69, No. 1, January 1981, pp. 14-47.
(http://people.csail.mit.edu/
bkph/papers/Hill-Shading.pdf)</p>

<a name="SEE ALSO"></a>
<h2>SEE ALSO</h2>


<p style="margin-left:11%; margin-top: 1em"><i><A HREF="GMT.html">GMT</A></i>(1),
<i><A HREF="gmtdefaults.html">gmtdefaults</A></i>(1), <i><A HREF="grdhisteq.html">grdhisteq</A></i>(1),
<i><A HREF="grdimage.html">grdimage</A></i>(1), <i><A HREF="grdview.html">grdview</A></i>(1),
<i><A HREF="grdvector.html">grdvector</A></i>(1)</p>
<hr>
</body>
</html>