Sophie

Sophie

distrib > Fedora > 14 > i386 > by-pkgid > 623999701586b0ea103ff2ccad7954a6 > files > 7237

boost-doc-1.44.0-1.fc14.noarch.rpm

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Boost.Math</title>
<link rel="stylesheet" href="../../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="index.html" title="Boost.Math">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../boost.png"></td>
<td align="center"><a href="../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
<div class="article">
<div class="titlepage">
<div>
<div><h2 class="title">
<a name="boost_math"></a>Boost.Math</h2></div>
<div><div class="authorgroup">
<div class="author"><h3 class="author">
<span class="firstname">John</span> <span class="surname">Maddock</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Paul A.</span> <span class="surname">Bristow</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Hubert</span> <span class="surname">Holin</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Daryle</span> <span class="surname">Walker</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Xiaogang</span> <span class="surname">Zhang</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Bruno</span> <span class="surname">Lalande</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Johan</span> <span class="surname">R&#229;de</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Gautam</span> <span class="surname">Sewani</span>
</h3></div>
<div class="author"><h3 class="author">
<span class="firstname">Thijs</span> <span class="surname">van den Berg</span>
</h3></div>
</div></div>
<div><p class="copyright">Copyright &#169; 2006 , 2007, 2008, 2009 John Maddock, Paul A. Bristow,
      Hubert Holin, Daryle Walker, Xiaogang Zhang, Bruno Lalande, Johan R&#229;de,
      Gautam Sewani and Thijs van den Berg</p></div>
<div><div class="legalnotice">
<a name="id759784"></a><p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></div>
</div>
<hr>
</div>
<p>
    The following libraries are present in Boost.Math:
  </p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
            <p>
              Library
            </p>
          </th>
<th>
            <p>
              Description
            </p>
          </th>
</tr></thead>
<tbody>
<tr>
<td>
            <p>
              Complex Number Inverse Trigonometric Functions
            </p>
            <p>
              <a href="../complex/html/index.html" target="_top">HTML Docs</a>
            </p>
            <p>
              <a href="http://svn.boost.org/svn/boost/sandbox/pdf/math/release/complex-tr1.pdf" target="_top">PDF
              Docs</a>
            </p>
          </td>
<td>
            <p>
              These complex number algorithms are the inverses of trigonometric functions
              currently present in the C++ standard. Equivalents to these functions
              are part of the C99 standard, and are part of the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Technical
              Report on C++ Library Extensions</a>.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              Greatest Common Divisor and Least Common Multiple
            </p>
            <p>
              <a href="../gcd/html/index.html" target="_top">HTML Docs</a>
            </p>
            <p>
              <a href="http://svn.boost.org/svn/boost/sandbox/pdf/math/release/math-gcd.pdf" target="_top">PDF
              Docs</a>
            </p>
          </td>
<td>
            <p>
              The class and function templates in &lt;boost/math/common_factor.hpp&gt;
              provide run-time and compile-time evaluation of the greatest common
              divisor (GCD) or least common multiple (LCM) of two integers. These
              facilities are useful for many numeric-oriented generic programming
              problems.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              Octonions
            </p>
            <p>
              <a href="../octonion/html/index.html" target="_top">HTML Docs</a>
            </p>
            <p>
              <a href="http://svn.boost.org/svn/boost/sandbox/pdf/math/release/octonion.pdf" target="_top">PDF
              Docs</a>
            </p>
          </td>
<td>
            <p>
              Octonions, like <a href="../quaternion/html/index.html" target="_top">quaternions</a>,
              are a relative of complex numbers.
            </p>
            <p>
              Octonions see some use in theoretical physics.
            </p>
            <p>
              In practical terms, an octonion is simply an octuple of real numbers
              (&#945;,&#946;,&#947;,&#948;,&#949;,&#950;,&#951;,&#952;), which we can write in the form <span class="emphasis"><em><code class="literal">o = &#945; + &#946;i + &#947;j + &#948;k + &#949;e' + &#950;i' + &#951;j' + &#952;k'</code></em></span>,
              where <span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
              and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects
              as for quaternions, and <span class="emphasis"><em><code class="literal">e'</code></em></span>,
              <span class="emphasis"><em><code class="literal">i'</code></em></span>, <span class="emphasis"><em><code class="literal">j'</code></em></span>
              and <span class="emphasis"><em><code class="literal">k'</code></em></span> are distinct objects
              which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>
              (or <span class="emphasis"><em><code class="literal">j</code></em></span> or <span class="emphasis"><em><code class="literal">k</code></em></span>).
            </p>
            <p>
              Addition and a multiplication is defined on the set of octonions, which
              generalize their quaternionic counterparts. The main novelty this time
              is that <span class="bold"><strong>the multiplication is not only not commutative,
              is now not even associative</strong></span> (i.e. there are quaternions
              <span class="emphasis"><em><code class="literal">x</code></em></span>, <span class="emphasis"><em><code class="literal">y</code></em></span>
              and <span class="emphasis"><em><code class="literal">z</code></em></span> such that <span class="emphasis"><em><code class="literal">x(yz)
              &#8800; (xy)z</code></em></span>). A way of remembering things is by using
              the following multiplication table:
            </p>
            <p>
              <span class="inlinemediaobject"><img src="../../octonion/graphics/octonion_blurb17.jpeg" alt="octonion_blurb17"></span>
            </p>
            <p>
              Octonions (and their kin) are described in far more details in this
              other <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with
              <a href="../../quaternion/TQE_EA.pdf" target="_top">errata and addenda</a>).
            </p>
            <p>
              Some traditional constructs, such as the exponential, carry over without
              too much change into the realms of octonions, but other, such as taking
              a square root, do not (the fact that the exponential has a closed form
              is a result of the author, but the fact that the exponential exists
              at all for octonions is known since quite a long time ago).
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              Special Functions
            </p>
            <p>
              <a href="../sf_and_dist/html/index.html" target="_top">HTML Docs</a>
            </p>
            <p>
              <a href="http://svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
              Docs</a>
            </p>
          </td>
<td>
            <p>
              Provides a number of high quality special functions, initially these
              were concentrated on functions used in statistical applications along
              with those in the Technical Report on C++ Library Extensions.
            </p>
            <p>
              The function families currently implemented are the gamma, beta &amp;
              erf functions along with the incomplete gamma and beta functions (four
              variants of each) and all the possible inverses of these, plus digamma,
              various factorial functions, Bessel functions, elliptic integrals,
              sinus cardinals (along with their hyperbolic variants), inverse hyperbolic
              functions, Legrendre/Laguerre/Hermite polynomials and various special
              power and logarithmic functions.
            </p>
            <p>
              All the implementations are fully generic and support the use of arbitrary
              "real-number" types, although they are optimised for use
              with types with known-about significand (or mantissa) sizes: typically
              float, double or long double.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              Statistical Distributions
            </p>
            <p>
              <a href="../sf_and_dist/html/index.html" target="_top">HTML Docs</a>
            </p>
            <p>
              <a href="http://svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
              Docs</a>
            </p>
          </td>
<td>
            <p>
              Provides a reasonably comprehensive set of statistical distributions,
              upon which higher level statistical tests can be built.
            </p>
            <p>
              The initial focus is on the central univariate distributions. Both
              continuous (like normal &amp; Fisher) and discrete (like binomial &amp;
              Poisson) distributions are provided.
            </p>
            <p>
              A comprehensive tutorial is provided, along with a series of worked
              examples illustrating how the library is used to conduct statistical
              tests.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              Quaternions
            </p>
            <p>
              <a href="../quaternion/html/index.html" target="_top">HTML Docs</a>
            </p>
            <p>
              <a href="http://svn.boost.org/svn/boost/sandbox/pdf/math/release/quaternion.pdf" target="_top">PDF
              Docs</a>
            </p>
          </td>
<td>
            <p>
              Quaternions are a relative of complex numbers.
            </p>
            <p>
              Quaternions are in fact part of a small hierarchy of structures built
              upon the real numbers, which comprise only the set of real numbers
              (traditionally named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>),
              the set of complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>), the set of quaternions (traditionally
              named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>) and
              the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>),
              which possess interesting mathematical properties (chief among which
              is the fact that they are <span class="emphasis"><em>division algebras</em></span>,
              <span class="emphasis"><em>i.e.</em></span> where the following property is true: if
              <span class="emphasis"><em><code class="literal">y</code></em></span> is an element of that algebra
              and is <span class="bold"><strong>not equal to zero</strong></span>, then <span class="emphasis"><em><code class="literal">yx
              = yx'</code></em></span>, where <span class="emphasis"><em><code class="literal">x</code></em></span>
              and <span class="emphasis"><em><code class="literal">x'</code></em></span> denote elements of that
              algebra, implies that <span class="emphasis"><em><code class="literal">x = x'</code></em></span>).
              Each member of the hierarchy is a super-set of the former.
            </p>
            <p>
              One of the most important aspects of quaternions is that they provide
              an efficient way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
              (the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
            </p>
            <p>
              In practical terms, a quaternion is simply a quadruple of real numbers
              (&#945;,&#946;,&#947;,&#948;), which we can write in the form <span class="emphasis"><em><code class="literal">q = &#945; + &#946;i + &#947;j + &#948;k</code></em></span>,
              where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object
              as for complex numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span>
              and <span class="emphasis"><em><code class="literal">k</code></em></span> are distinct objects
              which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
            </p>
            <p>
              An addition and a multiplication is defined on the set of quaternions,
              which generalize their real and complex counterparts. The main novelty
              here is that <span class="bold"><strong>the multiplication is not commutative</strong></span>
              (i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>
              and <span class="emphasis"><em><code class="literal">y</code></em></span> such that <span class="emphasis"><em><code class="literal">xy
              &#8800; yx</code></em></span>). A good mnemotechnical way of remembering
              things is by using the formula <span class="emphasis"><em><code class="literal">i*i = j*j = k*k =
              -1</code></em></span>.
            </p>
            <p>
              Quaternions (and their kin) are described in far more details in this
              other <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with
              <a href="../../quaternion/TQE_EA.pdf" target="_top">errata and addenda</a>).
            </p>
            <p>
              Some traditional constructs, such as the exponential, carry over without
              too much change into the realms of quaternions, but other, such as
              taking a square root, do not.
            </p>
          </td>
</tr>
</tbody>
</table></div>
<p>
    The following Boost libraries are also mathematically oriented:
  </p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
            <p>
              Library
            </p>
          </th>
<th>
            <p>
              Description
            </p>
          </th>
</tr></thead>
<tbody>
<tr>
<td>
            <p>
              <a href="../../../integer/index.html" target="_top">Integer</a>
            </p>
          </td>
<td>
            <p>
              Headers to ease dealing with integral types.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../numeric/interval/doc/interval.htm" target="_top">Interval</a>
            </p>
          </td>
<td>
            <p>
              As implied by its name, this library is intended to help manipulating
              mathematical intervals. It consists of a single header &lt;boost/numeric/interval.hpp&gt;
              and principally a type which can be used as interval&lt;T&gt;.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../multi_array/doc/index.html" target="_top">Multi Array</a>
            </p>
          </td>
<td>
            <p>
              Boost.MultiArray provides a generic N-dimensional array concept definition
              and common implementations of that interface.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../numeric/conversion/index.html" target="_top">Numeric.Conversion</a>
            </p>
          </td>
<td>
            <p>
              The Boost Numeric Conversion library is a collection of tools to describe
              and perform conversions between values of different numeric types.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../utility/operators.htm" target="_top">Operators</a>
            </p>
          </td>
<td>
            <p>
              The header &lt;boost/operators.hpp&gt; supplies several sets of class
              templates (in namespace boost). These templates define operators at
              namespace scope in terms of a minimal number of fundamental operators
              provided by the class.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../random/index.html" target="_top">Random</a>
            </p>
          </td>
<td>
            <p>
              Random numbers are useful in a variety of applications. The Boost Random
              Number Library (Boost.Random for short) provides a vast variety of
              generators and distributions to produce random numbers having useful
              properties, such as uniform distribution.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../rational/index.html" target="_top">Rational</a>
            </p>
          </td>
<td>
            <p>
              The header rational.hpp provides an implementation of rational numbers.
              The implementation is template-based, in a similar manner to the standard
              complex number class.
            </p>
          </td>
</tr>
<tr>
<td>
            <p>
              <a href="../../../numeric/ublas/doc/index.htm" target="_top">uBLAS</a>
            </p>
          </td>
<td>
            <p>
              uBLAS is a C++ template class library that provides BLAS level 1, 2,
              3 functionality for dense, packed and sparse matrices. The design and
              implementation unify mathematical notation via operator overloading
              and efficient code generation via expression templates.
            </p>
          </td>
</tr>
</tbody>
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><p><small>Last revised:  ,  at  </small></p></td>
<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
</body>
</html>