Sophie

Sophie

distrib > Fedora > 14 > x86_64 > media > updates > by-pkgid > 0b420d0fce195cf4115dc6a3be5c2da2 > files > 108

sphinxbase-devel-0.7-1.fc14.i686.rpm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>SphinxBase: src/libsphinxbase/fe/fe_sigproc.c Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.7.3 -->
<div id="top">
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">SphinxBase&#160;<span id="projectnumber">0.6</span></div>
  </td>
 </tr>
 </tbody>
</table>
</div>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="index.html"><span>Main&#160;Page</span></a></li>
      <li><a href="pages.html"><span>Related&#160;Pages</span></a></li>
      <li><a href="annotated.html"><span>Data&#160;Structures</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
      <li><a href="globals.html"><span>Globals</span></a></li>
    </ul>
  </div>
</div>
<div id="side-nav" class="ui-resizable side-nav-resizable">
  <div id="nav-tree">
    <div id="nav-tree-contents">
    </div>
  </div>
  <div id="splitbar" style="-moz-user-select:none;" 
       class="ui-resizable-handle">
  </div>
</div>
<script type="text/javascript">
  initNavTree('fe__sigproc_8c.html','');
</script>
<div id="doc-content">
<div class="header">
  <div class="headertitle">
<h1>src/libsphinxbase/fe/fe_sigproc.c</h1>  </div>
</div>
<div class="contents">
<div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 <span class="comment">/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */</span>
<a name="l00002"></a>00002 <span class="comment">/* ====================================================================</span>
<a name="l00003"></a>00003 <span class="comment"> * Copyright (c) 1996-2004 Carnegie Mellon University.  All rights </span>
<a name="l00004"></a>00004 <span class="comment"> * reserved.</span>
<a name="l00005"></a>00005 <span class="comment"> *</span>
<a name="l00006"></a>00006 <span class="comment"> * Redistribution and use in source and binary forms, with or without</span>
<a name="l00007"></a>00007 <span class="comment"> * modification, are permitted provided that the following conditions</span>
<a name="l00008"></a>00008 <span class="comment"> * are met:</span>
<a name="l00009"></a>00009 <span class="comment"> *</span>
<a name="l00010"></a>00010 <span class="comment"> * 1. Redistributions of source code must retain the above copyright</span>
<a name="l00011"></a>00011 <span class="comment"> *    notice, this list of conditions and the following disclaimer. </span>
<a name="l00012"></a>00012 <span class="comment"> *</span>
<a name="l00013"></a>00013 <span class="comment"> * 2. Redistributions in binary form must reproduce the above copyright</span>
<a name="l00014"></a>00014 <span class="comment"> *    notice, this list of conditions and the following disclaimer in</span>
<a name="l00015"></a>00015 <span class="comment"> *    the documentation and/or other materials provided with the</span>
<a name="l00016"></a>00016 <span class="comment"> *    distribution.</span>
<a name="l00017"></a>00017 <span class="comment"> *</span>
<a name="l00018"></a>00018 <span class="comment"> * This work was supported in part by funding from the Defense Advanced </span>
<a name="l00019"></a>00019 <span class="comment"> * Research Projects Agency and the National Science Foundation of the </span>
<a name="l00020"></a>00020 <span class="comment"> * United States of America, and the CMU Sphinx Speech Consortium.</span>
<a name="l00021"></a>00021 <span class="comment"> *</span>
<a name="l00022"></a>00022 <span class="comment"> * THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS&#39;&#39; AND </span>
<a name="l00023"></a>00023 <span class="comment"> * ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, </span>
<a name="l00024"></a>00024 <span class="comment"> * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR</span>
<a name="l00025"></a>00025 <span class="comment"> * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY</span>
<a name="l00026"></a>00026 <span class="comment"> * NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,</span>
<a name="l00027"></a>00027 <span class="comment"> * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT </span>
<a name="l00028"></a>00028 <span class="comment"> * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, </span>
<a name="l00029"></a>00029 <span class="comment"> * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY </span>
<a name="l00030"></a>00030 <span class="comment"> * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT </span>
<a name="l00031"></a>00031 <span class="comment"> * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE </span>
<a name="l00032"></a>00032 <span class="comment"> * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.</span>
<a name="l00033"></a>00033 <span class="comment"> *</span>
<a name="l00034"></a>00034 <span class="comment"> * ====================================================================</span>
<a name="l00035"></a>00035 <span class="comment"> *</span>
<a name="l00036"></a>00036 <span class="comment"> */</span>
<a name="l00037"></a>00037 
<a name="l00038"></a>00038 <span class="preprocessor">#include &lt;stdio.h&gt;</span>
<a name="l00039"></a>00039 <span class="preprocessor">#include &lt;math.h&gt;</span>
<a name="l00040"></a>00040 <span class="preprocessor">#include &lt;string.h&gt;</span>
<a name="l00041"></a>00041 <span class="preprocessor">#include &lt;stdlib.h&gt;</span>
<a name="l00042"></a>00042 <span class="preprocessor">#include &lt;assert.h&gt;</span>
<a name="l00043"></a>00043 
<a name="l00044"></a>00044 <span class="preprocessor">#ifdef HAVE_CONFIG_H</span>
<a name="l00045"></a>00045 <span class="preprocessor"></span><span class="preprocessor">#include &lt;config.h&gt;</span>
<a name="l00046"></a>00046 <span class="preprocessor">#endif</span>
<a name="l00047"></a>00047 <span class="preprocessor"></span>
<a name="l00048"></a>00048 <span class="preprocessor">#ifdef _MSC_VER</span>
<a name="l00049"></a>00049 <span class="preprocessor"></span><span class="preprocessor">#pragma warning (disable: 4244)</span>
<a name="l00050"></a>00050 <span class="preprocessor"></span><span class="preprocessor">#endif</span>
<a name="l00051"></a>00051 <span class="preprocessor"></span>
<a name="l00052"></a>00052 <span class="preprocessor">#include &quot;sphinxbase/prim_type.h&quot;</span>
<a name="l00053"></a>00053 <span class="preprocessor">#include &quot;sphinxbase/ckd_alloc.h&quot;</span>
<a name="l00054"></a>00054 <span class="preprocessor">#include &quot;sphinxbase/byteorder.h&quot;</span>
<a name="l00055"></a>00055 <span class="preprocessor">#include &quot;sphinxbase/fixpoint.h&quot;</span>
<a name="l00056"></a>00056 <span class="preprocessor">#include &quot;sphinxbase/fe.h&quot;</span>
<a name="l00057"></a>00057 <span class="preprocessor">#include &quot;sphinxbase/genrand.h&quot;</span>
<a name="l00058"></a>00058 <span class="preprocessor">#include &quot;sphinxbase/libutil.h&quot;</span>
<a name="l00059"></a>00059 <span class="preprocessor">#include &quot;sphinxbase/err.h&quot;</span>
<a name="l00060"></a>00060 
<a name="l00061"></a>00061 <span class="preprocessor">#include &quot;fe_internal.h&quot;</span>
<a name="l00062"></a>00062 <span class="preprocessor">#include &quot;fe_warp.h&quot;</span>
<a name="l00063"></a>00063 
<a name="l00064"></a>00064 <span class="comment">/* Use extra precision for cosines, Hamming window, pre-emphasis</span>
<a name="l00065"></a>00065 <span class="comment"> * coefficient, twiddle factors. */</span>
<a name="l00066"></a>00066 <span class="preprocessor">#ifdef FIXED_POINT</span>
<a name="l00067"></a>00067 <span class="preprocessor"></span><span class="preprocessor">#define FLOAT2COS(x) FLOAT2FIX_ANY(x,30)</span>
<a name="l00068"></a>00068 <span class="preprocessor"></span><span class="preprocessor">#define COSMUL(x,y) FIXMUL_ANY(x,y,30)</span>
<a name="l00069"></a>00069 <span class="preprocessor"></span><span class="preprocessor">#else</span>
<a name="l00070"></a>00070 <span class="preprocessor"></span><span class="preprocessor">#define FLOAT2COS(x) (x)</span>
<a name="l00071"></a>00071 <span class="preprocessor"></span><span class="preprocessor">#define COSMUL(x,y) ((x)*(y))</span>
<a name="l00072"></a>00072 <span class="preprocessor"></span><span class="preprocessor">#endif</span>
<a name="l00073"></a>00073 <span class="preprocessor"></span>
<a name="l00074"></a>00074 <span class="preprocessor">#ifdef FIXED_POINT</span>
<a name="l00075"></a>00075 <span class="preprocessor"></span><span class="comment">/* Internal log-addition table for natural log with radix point at 8</span>
<a name="l00076"></a>00076 <span class="comment"> * bits.  Each entry is 256 * log(1 + e^{-n/256}).  This is used in the</span>
<a name="l00077"></a>00077 <span class="comment"> * log-add computation:</span>
<a name="l00078"></a>00078 <span class="comment"> *</span>
<a name="l00079"></a>00079 <span class="comment"> * e^z = e^x + e^y</span>
<a name="l00080"></a>00080 <span class="comment"> * e^z = e^x(1 + e^{y-x})     = e^y(1 + e^{x-y})</span>
<a name="l00081"></a>00081 <span class="comment"> * z   = x + log(1 + e^{y-x}) = y + log(1 + e^{x-y})</span>
<a name="l00082"></a>00082 <span class="comment"> *</span>
<a name="l00083"></a>00083 <span class="comment"> * So when y &gt; x, z = y + logadd_table[-(x-y)]</span>
<a name="l00084"></a>00084 <span class="comment"> *    when x &gt; y, z = x + logadd_table[-(y-x)]</span>
<a name="l00085"></a>00085 <span class="comment"> */</span>
<a name="l00086"></a>00086 <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">char</span> fe_logadd_table[] = {
<a name="l00087"></a>00087 177, 177, 176, 176, 175, 175, 174, 174, 173, 173,
<a name="l00088"></a>00088 172, 172, 172, 171, 171, 170, 170, 169, 169, 168,
<a name="l00089"></a>00089 168, 167, 167, 166, 166, 165, 165, 164, 164, 163,
<a name="l00090"></a>00090 163, 162, 162, 161, 161, 161, 160, 160, 159, 159,
<a name="l00091"></a>00091 158, 158, 157, 157, 156, 156, 155, 155, 155, 154,
<a name="l00092"></a>00092 154, 153, 153, 152, 152, 151, 151, 151, 150, 150,
<a name="l00093"></a>00093 149, 149, 148, 148, 147, 147, 147, 146, 146, 145,
<a name="l00094"></a>00094 145, 144, 144, 144, 143, 143, 142, 142, 141, 141,
<a name="l00095"></a>00095 141, 140, 140, 139, 139, 138, 138, 138, 137, 137,
<a name="l00096"></a>00096 136, 136, 136, 135, 135, 134, 134, 134, 133, 133,
<a name="l00097"></a>00097 132, 132, 131, 131, 131, 130, 130, 129, 129, 129,
<a name="l00098"></a>00098 128, 128, 128, 127, 127, 126, 126, 126, 125, 125,
<a name="l00099"></a>00099 124, 124, 124, 123, 123, 123, 122, 122, 121, 121,
<a name="l00100"></a>00100 121, 120, 120, 119, 119, 119, 118, 118, 118, 117,
<a name="l00101"></a>00101 117, 117, 116, 116, 115, 115, 115, 114, 114, 114,
<a name="l00102"></a>00102 113, 113, 113, 112, 112, 112, 111, 111, 110, 110,
<a name="l00103"></a>00103 110, 109, 109, 109, 108, 108, 108, 107, 107, 107,
<a name="l00104"></a>00104 106, 106, 106, 105, 105, 105, 104, 104, 104, 103,
<a name="l00105"></a>00105 103, 103, 102, 102, 102, 101, 101, 101, 100, 100,
<a name="l00106"></a>00106 100, 99, 99, 99, 98, 98, 98, 97, 97, 97,
<a name="l00107"></a>00107 96, 96, 96, 96, 95, 95, 95, 94, 94, 94,
<a name="l00108"></a>00108 93, 93, 93, 92, 92, 92, 92, 91, 91, 91,
<a name="l00109"></a>00109 90, 90, 90, 89, 89, 89, 89, 88, 88, 88,
<a name="l00110"></a>00110 87, 87, 87, 87, 86, 86, 86, 85, 85, 85,
<a name="l00111"></a>00111 85, 84, 84, 84, 83, 83, 83, 83, 82, 82,
<a name="l00112"></a>00112 82, 82, 81, 81, 81, 80, 80, 80, 80, 79,
<a name="l00113"></a>00113 79, 79, 79, 78, 78, 78, 78, 77, 77, 77,
<a name="l00114"></a>00114 77, 76, 76, 76, 75, 75, 75, 75, 74, 74,
<a name="l00115"></a>00115 74, 74, 73, 73, 73, 73, 72, 72, 72, 72,
<a name="l00116"></a>00116 71, 71, 71, 71, 71, 70, 70, 70, 70, 69,
<a name="l00117"></a>00117 69, 69, 69, 68, 68, 68, 68, 67, 67, 67,
<a name="l00118"></a>00118 67, 67, 66, 66, 66, 66, 65, 65, 65, 65,
<a name="l00119"></a>00119 64, 64, 64, 64, 64, 63, 63, 63, 63, 63,
<a name="l00120"></a>00120 62, 62, 62, 62, 61, 61, 61, 61, 61, 60,
<a name="l00121"></a>00121 60, 60, 60, 60, 59, 59, 59, 59, 59, 58,
<a name="l00122"></a>00122 58, 58, 58, 58, 57, 57, 57, 57, 57, 56,
<a name="l00123"></a>00123 56, 56, 56, 56, 55, 55, 55, 55, 55, 54,
<a name="l00124"></a>00124 54, 54, 54, 54, 53, 53, 53, 53, 53, 52,
<a name="l00125"></a>00125 52, 52, 52, 52, 52, 51, 51, 51, 51, 51,
<a name="l00126"></a>00126 50, 50, 50, 50, 50, 50, 49, 49, 49, 49,
<a name="l00127"></a>00127 49, 49, 48, 48, 48, 48, 48, 48, 47, 47,
<a name="l00128"></a>00128 47, 47, 47, 47, 46, 46, 46, 46, 46, 46,
<a name="l00129"></a>00129 45, 45, 45, 45, 45, 45, 44, 44, 44, 44,
<a name="l00130"></a>00130 44, 44, 43, 43, 43, 43, 43, 43, 43, 42,
<a name="l00131"></a>00131 42, 42, 42, 42, 42, 41, 41, 41, 41, 41,
<a name="l00132"></a>00132 41, 41, 40, 40, 40, 40, 40, 40, 40, 39,
<a name="l00133"></a>00133 39, 39, 39, 39, 39, 39, 38, 38, 38, 38,
<a name="l00134"></a>00134 38, 38, 38, 37, 37, 37, 37, 37, 37, 37,
<a name="l00135"></a>00135 37, 36, 36, 36, 36, 36, 36, 36, 35, 35,
<a name="l00136"></a>00136 35, 35, 35, 35, 35, 35, 34, 34, 34, 34,
<a name="l00137"></a>00137 34, 34, 34, 34, 33, 33, 33, 33, 33, 33,
<a name="l00138"></a>00138 33, 33, 32, 32, 32, 32, 32, 32, 32, 32,
<a name="l00139"></a>00139 32, 31, 31, 31, 31, 31, 31, 31, 31, 31,
<a name="l00140"></a>00140 30, 30, 30, 30, 30, 30, 30, 30, 30, 29,
<a name="l00141"></a>00141 29, 29, 29, 29, 29, 29, 29, 29, 28, 28,
<a name="l00142"></a>00142 28, 28, 28, 28, 28, 28, 28, 28, 27, 27,
<a name="l00143"></a>00143 27, 27, 27, 27, 27, 27, 27, 27, 26, 26,
<a name="l00144"></a>00144 26, 26, 26, 26, 26, 26, 26, 26, 25, 25,
<a name="l00145"></a>00145 25, 25, 25, 25, 25, 25, 25, 25, 25, 24,
<a name="l00146"></a>00146 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
<a name="l00147"></a>00147 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
<a name="l00148"></a>00148 23, 23, 22, 22, 22, 22, 22, 22, 22, 22,
<a name="l00149"></a>00149 22, 22, 22, 22, 21, 21, 21, 21, 21, 21,
<a name="l00150"></a>00150 21, 21, 21, 21, 21, 21, 21, 20, 20, 20,
<a name="l00151"></a>00151 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
<a name="l00152"></a>00152 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
<a name="l00153"></a>00153 19, 19, 19, 19, 18, 18, 18, 18, 18, 18,
<a name="l00154"></a>00154 18, 18, 18, 18, 18, 18, 18, 18, 18, 17,
<a name="l00155"></a>00155 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
<a name="l00156"></a>00156 17, 17, 17, 17, 16, 16, 16, 16, 16, 16,
<a name="l00157"></a>00157 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
<a name="l00158"></a>00158 16, 15, 15, 15, 15, 15, 15, 15, 15, 15,
<a name="l00159"></a>00159 15, 15, 15, 15, 15, 15, 15, 15, 14, 14,
<a name="l00160"></a>00160 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
<a name="l00161"></a>00161 14, 14, 14, 14, 14, 14, 14, 13, 13, 13,
<a name="l00162"></a>00162 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
<a name="l00163"></a>00163 13, 13, 13, 13, 13, 13, 13, 12, 12, 12,
<a name="l00164"></a>00164 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
<a name="l00165"></a>00165 12, 12, 12, 12, 12, 12, 12, 12, 12, 11,
<a name="l00166"></a>00166 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
<a name="l00167"></a>00167 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
<a name="l00168"></a>00168 11, 11, 11, 10, 10, 10, 10, 10, 10, 10,
<a name="l00169"></a>00169 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
<a name="l00170"></a>00170 10, 10, 10, 10, 10, 10, 10, 10, 10, 9,
<a name="l00171"></a>00171 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
<a name="l00172"></a>00172 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
<a name="l00173"></a>00173 9, 9, 9, 9, 9, 9, 9, 9, 8, 8,
<a name="l00174"></a>00174 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
<a name="l00175"></a>00175 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
<a name="l00176"></a>00176 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
<a name="l00177"></a>00177 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
<a name="l00178"></a>00178 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
<a name="l00179"></a>00179 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
<a name="l00180"></a>00180 7, 7, 7, 7, 7, 7, 7, 7, 6, 6,
<a name="l00181"></a>00181 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
<a name="l00182"></a>00182 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
<a name="l00183"></a>00183 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
<a name="l00184"></a>00184 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
<a name="l00185"></a>00185 6, 5, 5, 5, 5, 5, 5, 5, 5, 5,
<a name="l00186"></a>00186 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
<a name="l00187"></a>00187 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
<a name="l00188"></a>00188 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
<a name="l00189"></a>00189 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
<a name="l00190"></a>00190 5, 5, 5, 4, 4, 4, 4, 4, 4, 4,
<a name="l00191"></a>00191 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
<a name="l00192"></a>00192 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
<a name="l00193"></a>00193 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
<a name="l00194"></a>00194 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
<a name="l00195"></a>00195 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
<a name="l00196"></a>00196 4, 4, 4, 4, 4, 4, 4, 4, 3, 3,
<a name="l00197"></a>00197 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00198"></a>00198 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00199"></a>00199 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00200"></a>00200 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00201"></a>00201 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00202"></a>00202 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00203"></a>00203 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00204"></a>00204 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
<a name="l00205"></a>00205 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
<a name="l00206"></a>00206 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00207"></a>00207 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00208"></a>00208 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00209"></a>00209 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00210"></a>00210 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00211"></a>00211 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00212"></a>00212 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00213"></a>00213 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00214"></a>00214 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00215"></a>00215 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00216"></a>00216 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00217"></a>00217 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
<a name="l00218"></a>00218 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
<a name="l00219"></a>00219 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00220"></a>00220 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00221"></a>00221 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00222"></a>00222 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00223"></a>00223 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00224"></a>00224 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00225"></a>00225 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00226"></a>00226 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00227"></a>00227 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00228"></a>00228 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00229"></a>00229 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00230"></a>00230 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00231"></a>00231 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00232"></a>00232 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00233"></a>00233 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00234"></a>00234 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00235"></a>00235 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00236"></a>00236 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00237"></a>00237 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00238"></a>00238 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00239"></a>00239 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00240"></a>00240 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00241"></a>00241 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00242"></a>00242 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00243"></a>00243 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00244"></a>00244 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00245"></a>00245 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<a name="l00246"></a>00246 1, 1, 1, 1, 1, 1, 1, 0
<a name="l00247"></a>00247 };
<a name="l00248"></a>00248 <span class="keyword">static</span> <span class="keyword">const</span> <span class="keywordtype">int</span> fe_logadd_table_size = <span class="keyword">sizeof</span>(fe_logadd_table) / <span class="keyword">sizeof</span>(fe_logadd_table[0]);
<a name="l00249"></a>00249 
<a name="l00250"></a>00250 <span class="keyword">static</span> fixed32
<a name="l00251"></a>00251 fe_log_add(fixed32 x, fixed32 y)
<a name="l00252"></a>00252 {
<a name="l00253"></a>00253     fixed32 d, r;
<a name="l00254"></a>00254 
<a name="l00255"></a>00255     <span class="keywordflow">if</span> (x &gt; y) {
<a name="l00256"></a>00256         d = (x - y) &gt;&gt; (DEFAULT_RADIX - 8);
<a name="l00257"></a>00257         r = x;
<a name="l00258"></a>00258     }
<a name="l00259"></a>00259     <span class="keywordflow">else</span> {
<a name="l00260"></a>00260         d = (y - x) &gt;&gt; (DEFAULT_RADIX - 8);
<a name="l00261"></a>00261         r = y;
<a name="l00262"></a>00262     }
<a name="l00263"></a>00263     <span class="keywordflow">if</span> (d &gt; fe_logadd_table_size)
<a name="l00264"></a>00264         <span class="keywordflow">return</span> r;
<a name="l00265"></a>00265     <span class="keywordflow">else</span> {
<a name="l00266"></a>00266         r += ((fixed32)fe_logadd_table[d] &lt;&lt; (DEFAULT_RADIX - 8));
<a name="l00267"></a>00267 <span class="comment">/*</span>
<a name="l00268"></a>00268 <span class="comment">        printf(&quot;%d + %d = %d | %f + %f = %f | %f + %f = %f\n&quot;,</span>
<a name="l00269"></a>00269 <span class="comment">               x, y, r, FIX2FLOAT(x), FIX2FLOAT(y), FIX2FLOAT(r),</span>
<a name="l00270"></a>00270 <span class="comment">               exp(FIX2FLOAT(x)), exp(FIX2FLOAT(y)), exp(FIX2FLOAT(r)));</span>
<a name="l00271"></a>00271 <span class="comment">*/</span>
<a name="l00272"></a>00272         <span class="keywordflow">return</span> r;
<a name="l00273"></a>00273     }
<a name="l00274"></a>00274 }
<a name="l00275"></a>00275 
<a name="l00276"></a>00276 <span class="keyword">static</span> fixed32
<a name="l00277"></a>00277 fe_log(float32 x)
<a name="l00278"></a>00278 {
<a name="l00279"></a>00279     <span class="keywordflow">if</span> (x &lt;= 0) {
<a name="l00280"></a>00280         <span class="keywordflow">return</span> MIN_FIXLOG;
<a name="l00281"></a>00281     }
<a name="l00282"></a>00282     <span class="keywordflow">else</span> {
<a name="l00283"></a>00283         <span class="keywordflow">return</span> FLOAT2FIX(log(x));
<a name="l00284"></a>00284     }
<a name="l00285"></a>00285 }
<a name="l00286"></a>00286 <span class="preprocessor">#endif</span>
<a name="l00287"></a>00287 <span class="preprocessor"></span>
<a name="l00288"></a>00288 <span class="keyword">static</span> float32
<a name="l00289"></a>00289 fe_mel(<a class="code" href="structmelfb__s.html" title="Base Struct to hold all structure for MFCC computation.">melfb_t</a> *mel, float32 x)
<a name="l00290"></a>00290 {
<a name="l00291"></a>00291     float32 warped = fe_warp_unwarped_to_warped(mel, x);
<a name="l00292"></a>00292 
<a name="l00293"></a>00293     <span class="keywordflow">return</span> (float32) (2595.0 * log10(1.0 + warped / 700.0));
<a name="l00294"></a>00294 }
<a name="l00295"></a>00295 
<a name="l00296"></a>00296 <span class="keyword">static</span> float32
<a name="l00297"></a>00297 fe_melinv(<a class="code" href="structmelfb__s.html" title="Base Struct to hold all structure for MFCC computation.">melfb_t</a> *mel, float32 x)
<a name="l00298"></a>00298 {
<a name="l00299"></a>00299     float32 warped = (float32) (700.0 * (pow(10.0, x / 2595.0) - 1.0));
<a name="l00300"></a>00300     <span class="keywordflow">return</span> fe_warp_warped_to_unwarped(mel, warped);
<a name="l00301"></a>00301 }
<a name="l00302"></a>00302 
<a name="l00303"></a>00303 int32
<a name="l00304"></a>00304 fe_build_melfilters(<a class="code" href="structmelfb__s.html" title="Base Struct to hold all structure for MFCC computation.">melfb_t</a> *mel_fb)
<a name="l00305"></a>00305 {
<a name="l00306"></a>00306     float32 melmin, melmax, melbw, fftfreq;
<a name="l00307"></a>00307     <span class="keywordtype">int</span> n_coeffs, i, j;
<a name="l00308"></a>00308 
<a name="l00309"></a>00309     <span class="comment">/* Filter coefficient matrix, in flattened form. */</span>
<a name="l00310"></a>00310     mel_fb-&gt;spec_start = <a class="code" href="ckd__alloc_8h.html#a8e89a31c3c70710a8e023a177084bff2" title="Macro for __ckd_malloc__.">ckd_malloc</a>(mel_fb-&gt;num_filters * <span class="keyword">sizeof</span>(*mel_fb-&gt;spec_start));
<a name="l00311"></a>00311     mel_fb-&gt;filt_start = <a class="code" href="ckd__alloc_8h.html#a8e89a31c3c70710a8e023a177084bff2" title="Macro for __ckd_malloc__.">ckd_malloc</a>(mel_fb-&gt;num_filters * <span class="keyword">sizeof</span>(*mel_fb-&gt;filt_start));
<a name="l00312"></a>00312     mel_fb-&gt;filt_width = <a class="code" href="ckd__alloc_8h.html#a8e89a31c3c70710a8e023a177084bff2" title="Macro for __ckd_malloc__.">ckd_malloc</a>(mel_fb-&gt;num_filters * <span class="keyword">sizeof</span>(*mel_fb-&gt;filt_width));
<a name="l00313"></a>00313 
<a name="l00314"></a>00314     <span class="comment">/* First calculate the widths of each filter. */</span>
<a name="l00315"></a>00315     <span class="comment">/* Minimum and maximum frequencies in mel scale. */</span>
<a name="l00316"></a>00316     melmin = fe_mel(mel_fb, mel_fb-&gt;lower_filt_freq);
<a name="l00317"></a>00317     melmax = fe_mel(mel_fb, mel_fb-&gt;upper_filt_freq);
<a name="l00318"></a>00318 
<a name="l00319"></a>00319     <span class="comment">/* Width of filters in mel scale */</span>
<a name="l00320"></a>00320     melbw = (melmax - melmin) / (mel_fb-&gt;num_filters + 1);
<a name="l00321"></a>00321     <span class="keywordflow">if</span> (mel_fb-&gt;doublewide) {
<a name="l00322"></a>00322         melmin -= melbw;
<a name="l00323"></a>00323         melmax += melbw;
<a name="l00324"></a>00324         <span class="keywordflow">if</span> ((fe_melinv(mel_fb, melmin) &lt; 0) ||
<a name="l00325"></a>00325             (fe_melinv(mel_fb, melmax) &gt; mel_fb-&gt;sampling_rate / 2)) {
<a name="l00326"></a>00326             <a class="code" href="err_8h.html#a6a794bec721b555ac1f2167f9e12f662" title="Print warning information to standard error stream.">E_WARN</a>
<a name="l00327"></a>00327                 (<span class="stringliteral">&quot;Out of Range: low  filter edge = %f (%f)\n&quot;</span>,
<a name="l00328"></a>00328                  fe_melinv(mel_fb, melmin), 0.0);
<a name="l00329"></a>00329             <a class="code" href="err_8h.html#a6a794bec721b555ac1f2167f9e12f662" title="Print warning information to standard error stream.">E_WARN</a>
<a name="l00330"></a>00330                 (<span class="stringliteral">&quot;              high filter edge = %f (%f)\n&quot;</span>,
<a name="l00331"></a>00331                  fe_melinv(mel_fb, melmax), mel_fb-&gt;sampling_rate / 2);
<a name="l00332"></a>00332             <span class="keywordflow">return</span> FE_INVALID_PARAM_ERROR;
<a name="l00333"></a>00333         }
<a name="l00334"></a>00334     }
<a name="l00335"></a>00335 
<a name="l00336"></a>00336     <span class="comment">/* DFT point spacing */</span>
<a name="l00337"></a>00337     fftfreq = mel_fb-&gt;sampling_rate / (float32) mel_fb-&gt;fft_size;
<a name="l00338"></a>00338 
<a name="l00339"></a>00339     <span class="comment">/* Count and place filter coefficients. */</span>
<a name="l00340"></a>00340     n_coeffs = 0;
<a name="l00341"></a>00341     for (i = 0; i &lt; mel_fb-&gt;num_filters; ++i) {
<a name="l00342"></a>00342         float32 freqs[3];
<a name="l00343"></a>00343 
<a name="l00344"></a>00344         <span class="comment">/* Left, center, right frequencies in Hertz */</span>
<a name="l00345"></a>00345         <span class="keywordflow">for</span> (j = 0; j &lt; 3; ++j) {
<a name="l00346"></a>00346             <span class="keywordflow">if</span> (mel_fb-&gt;doublewide)
<a name="l00347"></a>00347                 freqs[j] = fe_melinv(mel_fb, (i + j * 2) * melbw + melmin);
<a name="l00348"></a>00348             <span class="keywordflow">else</span>
<a name="l00349"></a>00349                 freqs[j] = fe_melinv(mel_fb, (i + j) * melbw + melmin);
<a name="l00350"></a>00350             <span class="comment">/* Round them to DFT points if requested */</span>
<a name="l00351"></a>00351             <span class="keywordflow">if</span> (mel_fb-&gt;round_filters)
<a name="l00352"></a>00352                 freqs[j] = ((int)(freqs[j] / fftfreq + 0.5)) * fftfreq;
<a name="l00353"></a>00353         }
<a name="l00354"></a>00354 
<a name="l00355"></a>00355         <span class="comment">/* spec_start is the start of this filter in the power spectrum. */</span>
<a name="l00356"></a>00356         mel_fb-&gt;spec_start[i] = -1;
<a name="l00357"></a>00357         <span class="comment">/* There must be a better way... */</span>
<a name="l00358"></a>00358         <span class="keywordflow">for</span> (j = 0; j &lt; mel_fb-&gt;fft_size/2+1; ++j) {
<a name="l00359"></a>00359             float32 hz = j * fftfreq;
<a name="l00360"></a>00360             <span class="keywordflow">if</span> (hz &lt; freqs[0])
<a name="l00361"></a>00361                 <span class="keywordflow">continue</span>;
<a name="l00362"></a>00362             <span class="keywordflow">else</span> <span class="keywordflow">if</span> (hz &gt; freqs[2] || j == mel_fb-&gt;fft_size/2) {
<a name="l00363"></a>00363                 <span class="comment">/* filt_width is the width in DFT points of this filter. */</span>
<a name="l00364"></a>00364                 mel_fb-&gt;filt_width[i] = j - mel_fb-&gt;spec_start[i];
<a name="l00365"></a>00365                 <span class="comment">/* filt_start is the start of this filter in the filt_coeffs array. */</span>
<a name="l00366"></a>00366                 mel_fb-&gt;filt_start[i] = n_coeffs;
<a name="l00367"></a>00367                 n_coeffs += mel_fb-&gt;filt_width[i];
<a name="l00368"></a>00368                 <span class="keywordflow">break</span>;
<a name="l00369"></a>00369             }
<a name="l00370"></a>00370             <span class="keywordflow">if</span> (mel_fb-&gt;spec_start[i] == -1)
<a name="l00371"></a>00371                 mel_fb-&gt;spec_start[i] = j;
<a name="l00372"></a>00372         }
<a name="l00373"></a>00373     }
<a name="l00374"></a>00374 
<a name="l00375"></a>00375     <span class="comment">/* Now go back and allocate the coefficient array. */</span>
<a name="l00376"></a>00376     mel_fb-&gt;filt_coeffs = <a class="code" href="ckd__alloc_8h.html#a8e89a31c3c70710a8e023a177084bff2" title="Macro for __ckd_malloc__.">ckd_malloc</a>(n_coeffs * <span class="keyword">sizeof</span>(*mel_fb-&gt;filt_coeffs));
<a name="l00377"></a>00377 
<a name="l00378"></a>00378     <span class="comment">/* And now generate the coefficients. */</span>
<a name="l00379"></a>00379     n_coeffs = 0;
<a name="l00380"></a>00380     <span class="keywordflow">for</span> (i = 0; i &lt; mel_fb-&gt;num_filters; ++i) {
<a name="l00381"></a>00381         float32 freqs[3];
<a name="l00382"></a>00382 
<a name="l00383"></a>00383         <span class="comment">/* Left, center, right frequencies in Hertz */</span>
<a name="l00384"></a>00384         <span class="keywordflow">for</span> (j = 0; j &lt; 3; ++j) {
<a name="l00385"></a>00385             <span class="keywordflow">if</span> (mel_fb-&gt;doublewide)
<a name="l00386"></a>00386                 freqs[j] = fe_melinv(mel_fb, (i + j * 2) * melbw + melmin);
<a name="l00387"></a>00387             <span class="keywordflow">else</span>
<a name="l00388"></a>00388                 freqs[j] = fe_melinv(mel_fb, (i + j) * melbw + melmin);
<a name="l00389"></a>00389             <span class="comment">/* Round them to DFT points if requested */</span>
<a name="l00390"></a>00390             <span class="keywordflow">if</span> (mel_fb-&gt;round_filters)
<a name="l00391"></a>00391                 freqs[j] = ((int)(freqs[j] / fftfreq + 0.5)) * fftfreq;
<a name="l00392"></a>00392         }
<a name="l00393"></a>00393 
<a name="l00394"></a>00394         <span class="keywordflow">for</span> (j = 0; j &lt; mel_fb-&gt;filt_width[i]; ++j) {
<a name="l00395"></a>00395             float32 hz, loslope, hislope;
<a name="l00396"></a>00396 
<a name="l00397"></a>00397             hz = (mel_fb-&gt;spec_start[i] + j) * fftfreq;
<a name="l00398"></a>00398             <span class="keywordflow">if</span> (hz &lt; freqs[0] || hz &gt; freqs[2]) {
<a name="l00399"></a>00399                 <a class="code" href="err_8h.html#a1a4495946ab2449d61108fe829a94613" title="Exit with non-zero status after error message.">E_FATAL</a>(<span class="stringliteral">&quot;WTF, %f &lt; %f &gt; %f\n&quot;</span>, freqs[0], hz, freqs[2]);
<a name="l00400"></a>00400             }
<a name="l00401"></a>00401             loslope = (hz - freqs[0]) / (freqs[1] - freqs[0]);
<a name="l00402"></a>00402             hislope = (freqs[2] - hz) / (freqs[2] - freqs[1]);
<a name="l00403"></a>00403             <span class="keywordflow">if</span> (mel_fb-&gt;unit_area) {
<a name="l00404"></a>00404                 loslope *= 2 / (freqs[2] - freqs[0]);
<a name="l00405"></a>00405                 hislope *= 2 / (freqs[2] - freqs[0]);
<a name="l00406"></a>00406             }
<a name="l00407"></a>00407             <span class="keywordflow">if</span> (loslope &lt; hislope) {
<a name="l00408"></a>00408 <span class="preprocessor">#ifdef FIXED_POINT</span>
<a name="l00409"></a>00409 <span class="preprocessor"></span>                mel_fb-&gt;filt_coeffs[n_coeffs] = fe_log(loslope);
<a name="l00410"></a>00410 <span class="preprocessor">#else</span>
<a name="l00411"></a>00411 <span class="preprocessor"></span>                mel_fb-&gt;filt_coeffs[n_coeffs] = loslope;
<a name="l00412"></a>00412 <span class="preprocessor">#endif</span>
<a name="l00413"></a>00413 <span class="preprocessor"></span>            }
<a name="l00414"></a>00414             <span class="keywordflow">else</span> {
<a name="l00415"></a>00415 <span class="preprocessor">#ifdef FIXED_POINT</span>
<a name="l00416"></a>00416 <span class="preprocessor"></span>                mel_fb-&gt;filt_coeffs[n_coeffs] = fe_log(hislope);
<a name="l00417"></a>00417 <span class="preprocessor">#else</span>
<a name="l00418"></a>00418 <span class="preprocessor"></span>                mel_fb-&gt;filt_coeffs[n_coeffs] = hislope;
<a name="l00419"></a>00419 <span class="preprocessor">#endif</span>
<a name="l00420"></a>00420 <span class="preprocessor"></span>            }
<a name="l00421"></a>00421             ++n_coeffs;
<a name="l00422"></a>00422         }
<a name="l00423"></a>00423     }
<a name="l00424"></a>00424     
<a name="l00425"></a>00425 
<a name="l00426"></a>00426     <span class="keywordflow">return</span> FE_SUCCESS;
<a name="l00427"></a>00427 }
<a name="l00428"></a>00428 
<a name="l00429"></a>00429 int32
<a name="l00430"></a>00430 fe_compute_melcosine(<a class="code" href="structmelfb__s.html" title="Base Struct to hold all structure for MFCC computation.">melfb_t</a> * mel_fb)
<a name="l00431"></a>00431 {
<a name="l00432"></a>00432 
<a name="l00433"></a>00433     float64 freqstep;
<a name="l00434"></a>00434     int32 i, j;
<a name="l00435"></a>00435 
<a name="l00436"></a>00436     mel_fb-&gt;mel_cosine =
<a name="l00437"></a>00437         (mfcc_t **) <a class="code" href="ckd__alloc_8h.html#a949e7b50fcd9697b1563fa57f50e9c4f" title="Macro for __ckd_calloc_2d__.">ckd_calloc_2d</a>(mel_fb-&gt;num_cepstra,
<a name="l00438"></a>00438                                   mel_fb-&gt;num_filters,
<a name="l00439"></a>00439                                   <span class="keyword">sizeof</span>(mfcc_t));
<a name="l00440"></a>00440 
<a name="l00441"></a>00441     freqstep = M_PI / mel_fb-&gt;num_filters;
<a name="l00442"></a>00442     <span class="comment">/* NOTE: The first row vector is actually unnecessary but we leave</span>
<a name="l00443"></a>00443 <span class="comment">     * it in to avoid confusion. */</span>
<a name="l00444"></a>00444     <span class="keywordflow">for</span> (i = 0; i &lt; mel_fb-&gt;num_cepstra; i++) {
<a name="l00445"></a>00445         <span class="keywordflow">for</span> (j = 0; j &lt; mel_fb-&gt;num_filters; j++) {
<a name="l00446"></a>00446             float64 cosine;
<a name="l00447"></a>00447 
<a name="l00448"></a>00448             cosine = cos(freqstep * i * (j + 0.5));
<a name="l00449"></a>00449             mel_fb-&gt;mel_cosine[i][j] = FLOAT2COS(cosine);
<a name="l00450"></a>00450         }
<a name="l00451"></a>00451     }
<a name="l00452"></a>00452 
<a name="l00453"></a>00453     <span class="comment">/* Also precompute normalization constants for unitary DCT. */</span>
<a name="l00454"></a>00454     mel_fb-&gt;sqrt_inv_n = FLOAT2COS(sqrt(1.0 / mel_fb-&gt;num_filters));
<a name="l00455"></a>00455     mel_fb-&gt;sqrt_inv_2n = FLOAT2COS(sqrt(2.0 / mel_fb-&gt;num_filters));
<a name="l00456"></a>00456 
<a name="l00457"></a>00457     <span class="comment">/* And liftering weights */</span>
<a name="l00458"></a>00458     <span class="keywordflow">if</span> (mel_fb-&gt;lifter_val) {
<a name="l00459"></a>00459         mel_fb-&gt;lifter = calloc(mel_fb-&gt;num_cepstra, <span class="keyword">sizeof</span>(*mel_fb-&gt;lifter));
<a name="l00460"></a>00460         <span class="keywordflow">for</span> (i = 0; i &lt; mel_fb-&gt;num_cepstra; ++i) {
<a name="l00461"></a>00461             mel_fb-&gt;lifter[i] = FLOAT2MFCC(1 + mel_fb-&gt;lifter_val / 2
<a name="l00462"></a>00462                                            * sin(i * M_PI / mel_fb-&gt;lifter_val));
<a name="l00463"></a>00463         }
<a name="l00464"></a>00464     }
<a name="l00465"></a>00465 
<a name="l00466"></a>00466     <span class="keywordflow">return</span> (0);
<a name="l00467"></a>00467 }
<a name="l00468"></a>00468 
<a name="l00469"></a>00469 <span class="keyword">static</span> <span class="keywordtype">void</span>
<a name="l00470"></a>00470 fe_pre_emphasis(int16 <span class="keyword">const</span> *in, frame_t * out, int32 len,
<a name="l00471"></a>00471                 float32 factor, int16 prior)
<a name="l00472"></a>00472 {
<a name="l00473"></a>00473     <span class="keywordtype">int</span> i;
<a name="l00474"></a>00474 
<a name="l00475"></a>00475 <span class="preprocessor">#if defined(FIXED16)</span>
<a name="l00476"></a>00476 <span class="preprocessor"></span>    int16 fxd_alpha = (int16)(factor * 0x8000);
<a name="l00477"></a>00477     int32 tmp1, tmp2;
<a name="l00478"></a>00478 
<a name="l00479"></a>00479     tmp1 = (int32)in[0] &lt;&lt; 15;
<a name="l00480"></a>00480     tmp2 = (int32)prior * fxd_alpha;
<a name="l00481"></a>00481     out[0] = (int16)((tmp1 - tmp2) &gt;&gt; 15);
<a name="l00482"></a>00482     <span class="keywordflow">for</span> (i = 1; i &lt; len; ++i) {
<a name="l00483"></a>00483         tmp1 = (int32)in[i] &lt;&lt; 15;
<a name="l00484"></a>00484         tmp2 = (int32)in[i-1] * fxd_alpha;
<a name="l00485"></a>00485         out[i] = (int16)((tmp1 - tmp2) &gt;&gt; 15);
<a name="l00486"></a>00486     }
<a name="l00487"></a>00487 <span class="preprocessor">#elif defined(FIXED_POINT)</span>
<a name="l00488"></a>00488 <span class="preprocessor"></span>    fixed32 fxd_alpha = FLOAT2FIX(factor);
<a name="l00489"></a>00489     out[0] = ((fixed32)in[0] &lt;&lt; DEFAULT_RADIX) - (prior * fxd_alpha);
<a name="l00490"></a>00490     <span class="keywordflow">for</span> (i = 1; i &lt; len; ++i)
<a name="l00491"></a>00491         out[i] = ((fixed32)in[i] &lt;&lt; DEFAULT_RADIX)
<a name="l00492"></a>00492             - (fixed32)in[i-1] * fxd_alpha;
<a name="l00493"></a>00493 <span class="preprocessor">#else</span>
<a name="l00494"></a>00494 <span class="preprocessor"></span>    out[0] = (frame_t) in[0] - (frame_t) prior * factor;
<a name="l00495"></a>00495     <span class="keywordflow">for</span> (i = 1; i &lt; len; i++)
<a name="l00496"></a>00496         out[i] = (frame_t) in[i] - (frame_t) in[i-1] * factor;
<a name="l00497"></a>00497 <span class="preprocessor">#endif</span>
<a name="l00498"></a>00498 <span class="preprocessor"></span>}
<a name="l00499"></a>00499 
<a name="l00500"></a>00500 <span class="keyword">static</span> <span class="keywordtype">void</span>
<a name="l00501"></a>00501 fe_short_to_frame(int16 <span class="keyword">const</span> *in, frame_t * out, int32 len)
<a name="l00502"></a>00502 {
<a name="l00503"></a>00503     <span class="keywordtype">int</span> i;
<a name="l00504"></a>00504 
<a name="l00505"></a>00505 <span class="preprocessor">#if defined(FIXED16)</span>
<a name="l00506"></a>00506 <span class="preprocessor"></span>    memcpy(out, in, len * <span class="keyword">sizeof</span>(*out));
<a name="l00507"></a>00507 <span class="preprocessor">#elif defined(FIXED_POINT)</span>
<a name="l00508"></a>00508 <span class="preprocessor"></span>    <span class="keywordflow">for</span> (i = 0; i &lt; len; i++)
<a name="l00509"></a>00509         out[i] = (int32) in[i] &lt;&lt; DEFAULT_RADIX;
<a name="l00510"></a>00510 <span class="preprocessor">#else                           </span><span class="comment">/* FIXED_POINT */</span>
<a name="l00511"></a>00511     <span class="keywordflow">for</span> (i = 0; i &lt; len; i++)
<a name="l00512"></a>00512         out[i] = (frame_t) in[i];
<a name="l00513"></a>00513 <span class="preprocessor">#endif                          </span><span class="comment">/* FIXED_POINT */</span>
<a name="l00514"></a>00514 }
<a name="l00515"></a>00515 
<a name="l00516"></a>00516 <span class="keywordtype">void</span>
<a name="l00517"></a>00517 fe_create_hamming(window_t * in, int32 in_len)
<a name="l00518"></a>00518 {
<a name="l00519"></a>00519     <span class="keywordtype">int</span> i;
<a name="l00520"></a>00520 
<a name="l00521"></a>00521     <span class="comment">/* Symmetric, so we only create the first half of it. */</span>
<a name="l00522"></a>00522     <span class="keywordflow">for</span> (i = 0; i &lt; in_len / 2; i++) {
<a name="l00523"></a>00523         float64 hamm;
<a name="l00524"></a>00524         hamm  = (0.54 - 0.46 * cos(2 * M_PI * i /
<a name="l00525"></a>00525                                    ((float64) in_len - 1.0)));
<a name="l00526"></a>00526 <span class="preprocessor">#ifdef FIXED16</span>
<a name="l00527"></a>00527 <span class="preprocessor"></span>        in[i] = (int16)(hamm * 0x8000);
<a name="l00528"></a>00528 <span class="preprocessor">#else</span>
<a name="l00529"></a>00529 <span class="preprocessor"></span>        in[i] = FLOAT2COS(hamm);
<a name="l00530"></a>00530 <span class="preprocessor">#endif</span>
<a name="l00531"></a>00531 <span class="preprocessor"></span>    }
<a name="l00532"></a>00532 }
<a name="l00533"></a>00533 
<a name="l00534"></a>00534 <span class="keyword">static</span> <span class="keywordtype">void</span>
<a name="l00535"></a>00535 fe_hamming_window(frame_t * in, window_t * window, int32 in_len, int32 remove_dc)
<a name="l00536"></a>00536 {
<a name="l00537"></a>00537     <span class="keywordtype">int</span> i;
<a name="l00538"></a>00538 
<a name="l00539"></a>00539     <span class="keywordflow">if</span> (remove_dc) {
<a name="l00540"></a>00540 <span class="preprocessor">#ifdef FIXED16</span>
<a name="l00541"></a>00541 <span class="preprocessor"></span>        int32 mean = 0; <span class="comment">/* Use int32 to avoid possibility of overflow */</span>
<a name="l00542"></a>00542 <span class="preprocessor">#else</span>
<a name="l00543"></a>00543 <span class="preprocessor"></span>        frame_t mean = 0;
<a name="l00544"></a>00544 <span class="preprocessor">#endif</span>
<a name="l00545"></a>00545 <span class="preprocessor"></span>
<a name="l00546"></a>00546         <span class="keywordflow">for</span> (i = 0; i &lt; in_len; i++)
<a name="l00547"></a>00547             mean += in[i];
<a name="l00548"></a>00548         mean /= in_len;
<a name="l00549"></a>00549         <span class="keywordflow">for</span> (i = 0; i &lt; in_len; i++)
<a name="l00550"></a>00550             in[i] -= (frame_t)mean;
<a name="l00551"></a>00551     }
<a name="l00552"></a>00552 
<a name="l00553"></a>00553 <span class="preprocessor">#ifdef FIXED16</span>
<a name="l00554"></a>00554 <span class="preprocessor"></span>    <span class="keywordflow">for</span> (i = 0; i &lt; in_len/2; i++) {
<a name="l00555"></a>00555         int32 tmp1, tmp2;
<a name="l00556"></a>00556 
<a name="l00557"></a>00557         tmp1 = (int32)in[i] * window[i];
<a name="l00558"></a>00558         tmp2 = (int32)in[in_len-1-i] * window[i];
<a name="l00559"></a>00559         in[i] = (int16)(tmp1 &gt;&gt; 15);
<a name="l00560"></a>00560         in[in_len-1-i] = (int16)(tmp2 &gt;&gt; 15);
<a name="l00561"></a>00561     }
<a name="l00562"></a>00562 <span class="preprocessor">#else</span>
<a name="l00563"></a>00563 <span class="preprocessor"></span>    <span class="keywordflow">for</span> (i = 0; i &lt; in_len/2; i++) {
<a name="l00564"></a>00564         in[i] = COSMUL(in[i], window[i]);
<a name="l00565"></a>00565         in[in_len-1-i] = COSMUL(in[in_len-1-i], window[i]);
<a name="l00566"></a>00566     }
<a name="l00567"></a>00567 <span class="preprocessor">#endif</span>
<a name="l00568"></a>00568 <span class="preprocessor"></span>}
<a name="l00569"></a>00569 
<a name="l00570"></a>00570 <span class="keyword">static</span> <span class="keywordtype">int</span>
<a name="l00571"></a>00571 fe_spch_to_frame(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe, <span class="keywordtype">int</span> len)
<a name="l00572"></a>00572 {
<a name="l00573"></a>00573     <span class="comment">/* Copy to the frame buffer. */</span>
<a name="l00574"></a>00574     <span class="keywordflow">if</span> (fe-&gt;pre_emphasis_alpha != 0.0) {
<a name="l00575"></a>00575         fe_pre_emphasis(fe-&gt;spch, fe-&gt;frame, len,
<a name="l00576"></a>00576                         fe-&gt;pre_emphasis_alpha, fe-&gt;prior);
<a name="l00577"></a>00577         <span class="keywordflow">if</span> (len &gt;= fe-&gt;frame_shift)
<a name="l00578"></a>00578             fe-&gt;prior = fe-&gt;spch[fe-&gt;frame_shift - 1];
<a name="l00579"></a>00579         <span class="keywordflow">else</span>
<a name="l00580"></a>00580             fe-&gt;prior = fe-&gt;spch[len - 1];
<a name="l00581"></a>00581     }
<a name="l00582"></a>00582     <span class="keywordflow">else</span>
<a name="l00583"></a>00583         fe_short_to_frame(fe-&gt;spch, fe-&gt;frame, len);
<a name="l00584"></a>00584 
<a name="l00585"></a>00585     <span class="comment">/* Zero pad up to FFT size. */</span>
<a name="l00586"></a>00586     memset(fe-&gt;frame + len, 0,
<a name="l00587"></a>00587            (fe-&gt;fft_size - len) * <span class="keyword">sizeof</span>(*fe-&gt;frame));
<a name="l00588"></a>00588 
<a name="l00589"></a>00589     <span class="comment">/* Window. */</span>
<a name="l00590"></a>00590     fe_hamming_window(fe-&gt;frame, fe-&gt;hamming_window, fe-&gt;frame_size,
<a name="l00591"></a>00591                       fe-&gt;remove_dc);
<a name="l00592"></a>00592 
<a name="l00593"></a>00593     <span class="keywordflow">return</span> len;
<a name="l00594"></a>00594 }
<a name="l00595"></a>00595 
<a name="l00596"></a>00596 <span class="keywordtype">int</span>
<a name="l00597"></a>00597 fe_read_frame(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe, int16 <span class="keyword">const</span> *in, int32 len)
<a name="l00598"></a>00598 {
<a name="l00599"></a>00599     <span class="keywordtype">int</span> i;
<a name="l00600"></a>00600 
<a name="l00601"></a>00601     <span class="keywordflow">if</span> (len &gt; fe-&gt;frame_size)
<a name="l00602"></a>00602         len = fe-&gt;frame_size;
<a name="l00603"></a>00603 
<a name="l00604"></a>00604     <span class="comment">/* Read it into the raw speech buffer. */</span>
<a name="l00605"></a>00605     memcpy(fe-&gt;spch, in, len * <span class="keyword">sizeof</span>(*in));
<a name="l00606"></a>00606     <span class="comment">/* Swap and dither if necessary. */</span>
<a name="l00607"></a>00607     <span class="keywordflow">if</span> (fe-&gt;swap)
<a name="l00608"></a>00608         <span class="keywordflow">for</span> (i = 0; i &lt; len; ++i)
<a name="l00609"></a>00609             SWAP_INT16(&amp;fe-&gt;spch[i]);
<a name="l00610"></a>00610     <span class="keywordflow">if</span> (fe-&gt;dither)
<a name="l00611"></a>00611         <span class="keywordflow">for</span> (i = 0; i &lt; len; ++i)
<a name="l00612"></a>00612             fe-&gt;spch[i] += (int16) ((!(s3_rand_int31() % 4)) ? 1 : 0);
<a name="l00613"></a>00613 
<a name="l00614"></a>00614     <span class="keywordflow">return</span> fe_spch_to_frame(fe, len);
<a name="l00615"></a>00615 }
<a name="l00616"></a>00616 
<a name="l00617"></a>00617 <span class="keywordtype">int</span>
<a name="l00618"></a>00618 fe_shift_frame(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe, int16 <span class="keyword">const</span> *in, int32 len)
<a name="l00619"></a>00619 {
<a name="l00620"></a>00620     <span class="keywordtype">int</span> offset, i;
<a name="l00621"></a>00621 
<a name="l00622"></a>00622     <span class="keywordflow">if</span> (len &gt; fe-&gt;frame_shift)
<a name="l00623"></a>00623         len = fe-&gt;frame_shift;
<a name="l00624"></a>00624     offset = fe-&gt;frame_size - fe-&gt;frame_shift;
<a name="l00625"></a>00625 
<a name="l00626"></a>00626     <span class="comment">/* Shift data into the raw speech buffer. */</span>
<a name="l00627"></a>00627     memmove(fe-&gt;spch, fe-&gt;spch + fe-&gt;frame_shift,
<a name="l00628"></a>00628             offset * <span class="keyword">sizeof</span>(*fe-&gt;spch));
<a name="l00629"></a>00629     memcpy(fe-&gt;spch + offset, in, len * <span class="keyword">sizeof</span>(*fe-&gt;spch));
<a name="l00630"></a>00630     <span class="comment">/* Swap and dither if necessary. */</span>
<a name="l00631"></a>00631     <span class="keywordflow">if</span> (fe-&gt;swap)
<a name="l00632"></a>00632         <span class="keywordflow">for</span> (i = 0; i &lt; len; ++i)
<a name="l00633"></a>00633             SWAP_INT16(&amp;fe-&gt;spch[offset + i]);
<a name="l00634"></a>00634     <span class="keywordflow">if</span> (fe-&gt;dither)
<a name="l00635"></a>00635         <span class="keywordflow">for</span> (i = 0; i &lt; len; ++i)
<a name="l00636"></a>00636             fe-&gt;spch[offset + i]
<a name="l00637"></a>00637                 += (int16) ((!(s3_rand_int31() % 4)) ? 1 : 0);
<a name="l00638"></a>00638     
<a name="l00639"></a>00639     <span class="keywordflow">return</span> fe_spch_to_frame(fe, offset + len);
<a name="l00640"></a>00640 }
<a name="l00641"></a>00641 
<a name="l00645"></a>00645 <span class="keywordtype">void</span>
<a name="l00646"></a>00646 fe_create_twiddle(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe)
<a name="l00647"></a>00647 {
<a name="l00648"></a>00648     <span class="keywordtype">int</span> i;
<a name="l00649"></a>00649 
<a name="l00650"></a>00650     <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;fft_size / 4; ++i) {
<a name="l00651"></a>00651         float64 a = 2 * M_PI * i / fe-&gt;fft_size;
<a name="l00652"></a>00652 <span class="preprocessor">#ifdef FIXED16</span>
<a name="l00653"></a>00653 <span class="preprocessor"></span>        fe-&gt;ccc[i] = (int16)(cos(a) * 0x8000);
<a name="l00654"></a>00654         fe-&gt;sss[i] = (int16)(sin(a) * 0x8000);
<a name="l00655"></a>00655 <span class="preprocessor">#elif defined(FIXED_POINT)</span>
<a name="l00656"></a>00656 <span class="preprocessor"></span>        fe-&gt;ccc[i] = FLOAT2COS(cos(a));
<a name="l00657"></a>00657         fe-&gt;sss[i] = FLOAT2COS(sin(a));
<a name="l00658"></a>00658 <span class="preprocessor">#else</span>
<a name="l00659"></a>00659 <span class="preprocessor"></span>        fe-&gt;ccc[i] = cos(a);
<a name="l00660"></a>00660         fe-&gt;sss[i] = sin(a);
<a name="l00661"></a>00661 <span class="preprocessor">#endif</span>
<a name="l00662"></a>00662 <span class="preprocessor"></span>    }
<a name="l00663"></a>00663 }
<a name="l00664"></a>00664 
<a name="l00665"></a>00665 <span class="comment">/* Translated from the FORTRAN (obviously) from &quot;Real-Valued Fast</span>
<a name="l00666"></a>00666 <span class="comment"> * Fourier Transform Algorithms&quot; by Henrik V. Sorensen et al., IEEE</span>
<a name="l00667"></a>00667 <span class="comment"> * Transactions on Acoustics, Speech, and Signal Processing, vol. 35,</span>
<a name="l00668"></a>00668 <span class="comment"> * no.6.  The 16-bit version does a version of &quot;block floating</span>
<a name="l00669"></a>00669 <span class="comment"> * point&quot; in order to avoid rounding errors.</span>
<a name="l00670"></a>00670 <span class="comment"> */</span>
<a name="l00671"></a>00671 <span class="preprocessor">#if defined(FIXED16)</span>
<a name="l00672"></a>00672 <span class="preprocessor"></span><span class="keyword">static</span> <span class="keywordtype">int</span>
<a name="l00673"></a>00673 fe_fft_real(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe)
<a name="l00674"></a>00674 {
<a name="l00675"></a>00675     <span class="keywordtype">int</span> i, j, k, m, n, lz;
<a name="l00676"></a>00676     frame_t *x, xt, max;
<a name="l00677"></a>00677 
<a name="l00678"></a>00678     x = fe-&gt;frame;
<a name="l00679"></a>00679     m = fe-&gt;fft_order;
<a name="l00680"></a>00680     n = fe-&gt;fft_size;
<a name="l00681"></a>00681 
<a name="l00682"></a>00682     <span class="comment">/* Bit-reverse the input. */</span>
<a name="l00683"></a>00683     j = 0;
<a name="l00684"></a>00684     <span class="keywordflow">for</span> (i = 0; i &lt; n - 1; ++i) {
<a name="l00685"></a>00685         <span class="keywordflow">if</span> (i &lt; j) {
<a name="l00686"></a>00686             xt = x[j];
<a name="l00687"></a>00687             x[j] = x[i];
<a name="l00688"></a>00688             x[i] = xt;
<a name="l00689"></a>00689         }
<a name="l00690"></a>00690         k = n / 2;
<a name="l00691"></a>00691         <span class="keywordflow">while</span> (k &lt;= j) {
<a name="l00692"></a>00692             j -= k;
<a name="l00693"></a>00693             k /= 2;
<a name="l00694"></a>00694         }
<a name="l00695"></a>00695         j += k;
<a name="l00696"></a>00696     }
<a name="l00697"></a>00697     <span class="comment">/* Determine how many bits of dynamic range are in the input. */</span>
<a name="l00698"></a>00698     max = 0;
<a name="l00699"></a>00699     <span class="keywordflow">for</span> (i = 0; i &lt; n; ++i)
<a name="l00700"></a>00700         <span class="keywordflow">if</span> (abs(x[i]) &gt; max)
<a name="l00701"></a>00701             max = abs(x[i]);
<a name="l00702"></a>00702     <span class="comment">/* The FFT has a gain of M bits, so we need to attenuate the input</span>
<a name="l00703"></a>00703 <span class="comment">     * by M bits minus the number of leading zeroes in the input&#39;s</span>
<a name="l00704"></a>00704 <span class="comment">     * range in order to avoid overflows.  */</span>
<a name="l00705"></a>00705     <span class="keywordflow">for</span> (lz = 0; lz &lt; m; ++lz)
<a name="l00706"></a>00706         <span class="keywordflow">if</span> (max &amp; (1 &lt;&lt; (15-lz)))
<a name="l00707"></a>00707             <span class="keywordflow">break</span>;
<a name="l00708"></a>00708 
<a name="l00709"></a>00709     <span class="comment">/* Basic butterflies (2-point FFT, real twiddle factors):</span>
<a name="l00710"></a>00710 <span class="comment">     * x[i]   = x[i] +  1 * x[i+1]</span>
<a name="l00711"></a>00711 <span class="comment">     * x[i+1] = x[i] + -1 * x[i+1]</span>
<a name="l00712"></a>00712 <span class="comment">     */</span>
<a name="l00713"></a>00713     <span class="comment">/* The quantization error introduced by attenuating the input at</span>
<a name="l00714"></a>00714 <span class="comment">     * any given stage of the FFT has a cascading effect, so we hold</span>
<a name="l00715"></a>00715 <span class="comment">     * off on it until it&#39;s absolutely necessary. */</span>
<a name="l00716"></a>00716     <span class="keywordflow">for</span> (i = 0; i &lt; n; i += 2) {
<a name="l00717"></a>00717         <span class="keywordtype">int</span> atten = (lz == 0);
<a name="l00718"></a>00718         xt = x[i] &gt;&gt; atten;
<a name="l00719"></a>00719         x[i]     = xt + (x[i + 1] &gt;&gt; atten);
<a name="l00720"></a>00720         x[i + 1] = xt - (x[i + 1] &gt;&gt; atten);
<a name="l00721"></a>00721     }
<a name="l00722"></a>00722 
<a name="l00723"></a>00723     <span class="comment">/* The rest of the butterflies, in stages from 1..m */</span>
<a name="l00724"></a>00724     <span class="keywordflow">for</span> (k = 1; k &lt; m; ++k) {
<a name="l00725"></a>00725         <span class="keywordtype">int</span> n1, n2, n4;
<a name="l00726"></a>00726         <span class="comment">/* Start attenuating once we hit the number of leading zeros. */</span>
<a name="l00727"></a>00727         <span class="keywordtype">int</span> atten = (k &gt;= lz);
<a name="l00728"></a>00728 
<a name="l00729"></a>00729         n4 = k - 1;
<a name="l00730"></a>00730         n2 = k;
<a name="l00731"></a>00731         n1 = k + 1;
<a name="l00732"></a>00732         <span class="comment">/* Stride over each (1 &lt;&lt; (k+1)) points */</span>
<a name="l00733"></a>00733         <span class="keywordflow">for</span> (i = 0; i &lt; n; i += (1 &lt;&lt; n1)) {
<a name="l00734"></a>00734             <span class="comment">/* Basic butterfly with real twiddle factors:</span>
<a name="l00735"></a>00735 <span class="comment">             * x[i]          = x[i] +  1 * x[i + (1&lt;&lt;k)]</span>
<a name="l00736"></a>00736 <span class="comment">             * x[i + (1&lt;&lt;k)] = x[i] + -1 * x[i + (1&lt;&lt;k)]</span>
<a name="l00737"></a>00737 <span class="comment">             */</span>
<a name="l00738"></a>00738             xt = x[i] &gt;&gt; atten;
<a name="l00739"></a>00739             x[i]             = xt + (x[i + (1 &lt;&lt; n2)] &gt;&gt; atten);
<a name="l00740"></a>00740             x[i + (1 &lt;&lt; n2)] = xt - (x[i + (1 &lt;&lt; n2)] &gt;&gt; atten);
<a name="l00741"></a>00741 
<a name="l00742"></a>00742             <span class="comment">/* The other ones with real twiddle factors:</span>
<a name="l00743"></a>00743 <span class="comment">             * x[i + (1&lt;&lt;k) + (1&lt;&lt;(k-1))]</span>
<a name="l00744"></a>00744 <span class="comment">             *   = 0 * x[i + (1&lt;&lt;k-1)] + -1 * x[i + (1&lt;&lt;k) + (1&lt;&lt;k-1)]</span>
<a name="l00745"></a>00745 <span class="comment">             * x[i + (1&lt;&lt;(k-1))]</span>
<a name="l00746"></a>00746 <span class="comment">             *   = 1 * x[i + (1&lt;&lt;k-1)] +  0 * x[i + (1&lt;&lt;k) + (1&lt;&lt;k-1)]</span>
<a name="l00747"></a>00747 <span class="comment">             */</span>
<a name="l00748"></a>00748             x[i + (1 &lt;&lt; n2) + (1 &lt;&lt; n4)] = -x[i + (1 &lt;&lt; n2) + (1 &lt;&lt; n4)] &gt;&gt; atten;
<a name="l00749"></a>00749             x[i + (1 &lt;&lt; n4)]             =  x[i + (1 &lt;&lt; n4)] &gt;&gt; atten;
<a name="l00750"></a>00750             
<a name="l00751"></a>00751             <span class="comment">/* Butterflies with complex twiddle factors.</span>
<a name="l00752"></a>00752 <span class="comment">             * There are (1&lt;&lt;k-1) of them.</span>
<a name="l00753"></a>00753 <span class="comment">             */</span>
<a name="l00754"></a>00754             <span class="keywordflow">for</span> (j = 1; j &lt; (1 &lt;&lt; n4); ++j) {
<a name="l00755"></a>00755                 frame_t cc, ss, t1, t2;
<a name="l00756"></a>00756                 <span class="keywordtype">int</span> i1, i2, i3, i4;
<a name="l00757"></a>00757 
<a name="l00758"></a>00758                 i1 = i + j;
<a name="l00759"></a>00759                 i2 = i + (1 &lt;&lt; n2) - j;
<a name="l00760"></a>00760                 i3 = i + (1 &lt;&lt; n2) + j;
<a name="l00761"></a>00761                 i4 = i + (1 &lt;&lt; n2) + (1 &lt;&lt; n2) - j;
<a name="l00762"></a>00762 
<a name="l00763"></a>00763                 <span class="comment">/*</span>
<a name="l00764"></a>00764 <span class="comment">                 * cc = real(W[j * n / (1&lt;&lt;(k+1))])</span>
<a name="l00765"></a>00765 <span class="comment">                 * ss = imag(W[j * n / (1&lt;&lt;(k+1))])</span>
<a name="l00766"></a>00766 <span class="comment">                 */</span>
<a name="l00767"></a>00767                 cc = fe-&gt;ccc[j &lt;&lt; (m - n1)];
<a name="l00768"></a>00768                 ss = fe-&gt;sss[j &lt;&lt; (m - n1)];
<a name="l00769"></a>00769 
<a name="l00770"></a>00770                 <span class="comment">/* There are some symmetry properties which allow us</span>
<a name="l00771"></a>00771 <span class="comment">                 * to get away with only four multiplications here. */</span>
<a name="l00772"></a>00772                 {
<a name="l00773"></a>00773                     int32 tmp1, tmp2;
<a name="l00774"></a>00774                     tmp1 = (int32)x[i3] * cc + (int32)x[i4] * ss;
<a name="l00775"></a>00775                     tmp2 = (int32)x[i3] * ss - (int32)x[i4] * cc;
<a name="l00776"></a>00776                     t1 = (int16)(tmp1 &gt;&gt; 15) &gt;&gt; atten;
<a name="l00777"></a>00777                     t2 = (int16)(tmp2 &gt;&gt; 15) &gt;&gt; atten;
<a name="l00778"></a>00778                 }
<a name="l00779"></a>00779 
<a name="l00780"></a>00780                 x[i4] = (x[i2] &gt;&gt; atten) - t2;
<a name="l00781"></a>00781                 x[i3] = (-x[i2] &gt;&gt; atten) - t2;
<a name="l00782"></a>00782                 x[i2] = (x[i1] &gt;&gt; atten) - t1;
<a name="l00783"></a>00783                 x[i1] = (x[i1] &gt;&gt; atten) + t1;
<a name="l00784"></a>00784             }
<a name="l00785"></a>00785         }
<a name="l00786"></a>00786     }
<a name="l00787"></a>00787 
<a name="l00788"></a>00788     <span class="comment">/* Return the residual scaling factor. */</span>
<a name="l00789"></a>00789     <span class="keywordflow">return</span> lz;
<a name="l00790"></a>00790 }
<a name="l00791"></a>00791 <span class="preprocessor">#else </span><span class="comment">/* !FIXED16 */</span>
<a name="l00792"></a>00792 <span class="keyword">static</span> <span class="keywordtype">int</span>
<a name="l00793"></a>00793 fe_fft_real(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe)
<a name="l00794"></a>00794 {
<a name="l00795"></a>00795     <span class="keywordtype">int</span> i, j, k, m, n;
<a name="l00796"></a>00796     frame_t *x, xt;
<a name="l00797"></a>00797 
<a name="l00798"></a>00798     x = fe-&gt;frame;
<a name="l00799"></a>00799     m = fe-&gt;fft_order;
<a name="l00800"></a>00800     n = fe-&gt;fft_size;
<a name="l00801"></a>00801 
<a name="l00802"></a>00802     <span class="comment">/* Bit-reverse the input. */</span>
<a name="l00803"></a>00803     j = 0;
<a name="l00804"></a>00804     <span class="keywordflow">for</span> (i = 0; i &lt; n - 1; ++i) {
<a name="l00805"></a>00805         <span class="keywordflow">if</span> (i &lt; j) {
<a name="l00806"></a>00806             xt = x[j];
<a name="l00807"></a>00807             x[j] = x[i];
<a name="l00808"></a>00808             x[i] = xt;
<a name="l00809"></a>00809         }
<a name="l00810"></a>00810         k = n / 2;
<a name="l00811"></a>00811         <span class="keywordflow">while</span> (k &lt;= j) {
<a name="l00812"></a>00812             j -= k;
<a name="l00813"></a>00813             k /= 2;
<a name="l00814"></a>00814         }
<a name="l00815"></a>00815         j += k;
<a name="l00816"></a>00816     }
<a name="l00817"></a>00817 
<a name="l00818"></a>00818     <span class="comment">/* Basic butterflies (2-point FFT, real twiddle factors):</span>
<a name="l00819"></a>00819 <span class="comment">     * x[i]   = x[i] +  1 * x[i+1]</span>
<a name="l00820"></a>00820 <span class="comment">     * x[i+1] = x[i] + -1 * x[i+1]</span>
<a name="l00821"></a>00821 <span class="comment">     */</span>
<a name="l00822"></a>00822     <span class="keywordflow">for</span> (i = 0; i &lt; n; i += 2) {
<a name="l00823"></a>00823         xt = x[i];
<a name="l00824"></a>00824         x[i]     = (xt + x[i + 1]);
<a name="l00825"></a>00825         x[i + 1] = (xt - x[i + 1]);
<a name="l00826"></a>00826     }
<a name="l00827"></a>00827 
<a name="l00828"></a>00828     <span class="comment">/* The rest of the butterflies, in stages from 1..m */</span>
<a name="l00829"></a>00829     <span class="keywordflow">for</span> (k = 1; k &lt; m; ++k) {
<a name="l00830"></a>00830         <span class="keywordtype">int</span> n1, n2, n4;
<a name="l00831"></a>00831 
<a name="l00832"></a>00832         n4 = k - 1;
<a name="l00833"></a>00833         n2 = k;
<a name="l00834"></a>00834         n1 = k + 1;
<a name="l00835"></a>00835         <span class="comment">/* Stride over each (1 &lt;&lt; (k+1)) points */</span>
<a name="l00836"></a>00836         <span class="keywordflow">for</span> (i = 0; i &lt; n; i += (1 &lt;&lt; n1)) {
<a name="l00837"></a>00837             <span class="comment">/* Basic butterfly with real twiddle factors:</span>
<a name="l00838"></a>00838 <span class="comment">             * x[i]          = x[i] +  1 * x[i + (1&lt;&lt;k)]</span>
<a name="l00839"></a>00839 <span class="comment">             * x[i + (1&lt;&lt;k)] = x[i] + -1 * x[i + (1&lt;&lt;k)]</span>
<a name="l00840"></a>00840 <span class="comment">             */</span>
<a name="l00841"></a>00841             xt = x[i];
<a name="l00842"></a>00842             x[i]             = (xt + x[i + (1 &lt;&lt; n2)]);
<a name="l00843"></a>00843             x[i + (1 &lt;&lt; n2)] = (xt - x[i + (1 &lt;&lt; n2)]);
<a name="l00844"></a>00844 
<a name="l00845"></a>00845             <span class="comment">/* The other ones with real twiddle factors:</span>
<a name="l00846"></a>00846 <span class="comment">             * x[i + (1&lt;&lt;k) + (1&lt;&lt;(k-1))]</span>
<a name="l00847"></a>00847 <span class="comment">             *   = 0 * x[i + (1&lt;&lt;k-1)] + -1 * x[i + (1&lt;&lt;k) + (1&lt;&lt;k-1)]</span>
<a name="l00848"></a>00848 <span class="comment">             * x[i + (1&lt;&lt;(k-1))]</span>
<a name="l00849"></a>00849 <span class="comment">             *   = 1 * x[i + (1&lt;&lt;k-1)] +  0 * x[i + (1&lt;&lt;k) + (1&lt;&lt;k-1)]</span>
<a name="l00850"></a>00850 <span class="comment">             */</span>
<a name="l00851"></a>00851             x[i + (1 &lt;&lt; n2) + (1 &lt;&lt; n4)] = -x[i + (1 &lt;&lt; n2) + (1 &lt;&lt; n4)];
<a name="l00852"></a>00852             x[i + (1 &lt;&lt; n4)]             =  x[i + (1 &lt;&lt; n4)];
<a name="l00853"></a>00853             
<a name="l00854"></a>00854             <span class="comment">/* Butterflies with complex twiddle factors.</span>
<a name="l00855"></a>00855 <span class="comment">             * There are (1&lt;&lt;k-1) of them.</span>
<a name="l00856"></a>00856 <span class="comment">             */</span>
<a name="l00857"></a>00857             <span class="keywordflow">for</span> (j = 1; j &lt; (1 &lt;&lt; n4); ++j) {
<a name="l00858"></a>00858                 frame_t cc, ss, t1, t2;
<a name="l00859"></a>00859                 <span class="keywordtype">int</span> i1, i2, i3, i4;
<a name="l00860"></a>00860 
<a name="l00861"></a>00861                 i1 = i + j;
<a name="l00862"></a>00862                 i2 = i + (1 &lt;&lt; n2) - j;
<a name="l00863"></a>00863                 i3 = i + (1 &lt;&lt; n2) + j;
<a name="l00864"></a>00864                 i4 = i + (1 &lt;&lt; n2) + (1 &lt;&lt; n2) - j;
<a name="l00865"></a>00865 
<a name="l00866"></a>00866                 <span class="comment">/*</span>
<a name="l00867"></a>00867 <span class="comment">                 * cc = real(W[j * n / (1&lt;&lt;(k+1))])</span>
<a name="l00868"></a>00868 <span class="comment">                 * ss = imag(W[j * n / (1&lt;&lt;(k+1))])</span>
<a name="l00869"></a>00869 <span class="comment">                 */</span>
<a name="l00870"></a>00870                 cc = fe-&gt;ccc[j &lt;&lt; (m - n1)];
<a name="l00871"></a>00871                 ss = fe-&gt;sss[j &lt;&lt; (m - n1)];
<a name="l00872"></a>00872 
<a name="l00873"></a>00873                 <span class="comment">/* There are some symmetry properties which allow us</span>
<a name="l00874"></a>00874 <span class="comment">                 * to get away with only four multiplications here. */</span>
<a name="l00875"></a>00875                 t1 = COSMUL(x[i3], cc) + COSMUL(x[i4], ss);
<a name="l00876"></a>00876                 t2 = COSMUL(x[i3], ss) - COSMUL(x[i4], cc);
<a name="l00877"></a>00877 
<a name="l00878"></a>00878                 x[i4] = (x[i2] - t2);
<a name="l00879"></a>00879                 x[i3] = (-x[i2] - t2);
<a name="l00880"></a>00880                 x[i2] = (x[i1] - t1);
<a name="l00881"></a>00881                 x[i1] = (x[i1] + t1);
<a name="l00882"></a>00882             }
<a name="l00883"></a>00883         }
<a name="l00884"></a>00884     }
<a name="l00885"></a>00885 
<a name="l00886"></a>00886     <span class="comment">/* This isn&#39;t used, but return it for completeness. */</span>
<a name="l00887"></a>00887     <span class="keywordflow">return</span> m;
<a name="l00888"></a>00888 }
<a name="l00889"></a>00889 <span class="preprocessor">#endif </span><span class="comment">/* !FIXED16 */</span>
<a name="l00890"></a>00890 
<a name="l00891"></a>00891 <span class="keyword">static</span> <span class="keywordtype">void</span>
<a name="l00892"></a>00892 fe_spec_magnitude(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe)
<a name="l00893"></a>00893 {
<a name="l00894"></a>00894     frame_t *fft;
<a name="l00895"></a>00895     powspec_t *spec;
<a name="l00896"></a>00896     int32 j, scale, fftsize;
<a name="l00897"></a>00897 
<a name="l00898"></a>00898     <span class="comment">/* Do FFT and get the scaling factor back (only actually used in</span>
<a name="l00899"></a>00899 <span class="comment">     * fixed-point).  Note the scaling factor is expressed in bits. */</span>
<a name="l00900"></a>00900     scale = fe_fft_real(fe);
<a name="l00901"></a>00901 
<a name="l00902"></a>00902     <span class="comment">/* Convenience pointers to make things less awkward below. */</span>
<a name="l00903"></a>00903     fft = fe-&gt;frame;
<a name="l00904"></a>00904     spec = fe-&gt;spec;
<a name="l00905"></a>00905     fftsize = fe-&gt;fft_size;
<a name="l00906"></a>00906 
<a name="l00907"></a>00907     <span class="comment">/* We need to scale things up the rest of the way to N. */</span>
<a name="l00908"></a>00908     scale = fe-&gt;fft_order - scale;
<a name="l00909"></a>00909 
<a name="l00910"></a>00910     <span class="comment">/* The first point (DC coefficient) has no imaginary part */</span>
<a name="l00911"></a>00911     {
<a name="l00912"></a>00912 <span class="preprocessor">#ifdef FIXED16</span>
<a name="l00913"></a>00913 <span class="preprocessor"></span>        spec[0] = fixlog(abs(fft[0]) &lt;&lt; scale) * 2;
<a name="l00914"></a>00914 <span class="preprocessor">#elif defined(FIXED_POINT)</span>
<a name="l00915"></a>00915 <span class="preprocessor"></span>        spec[0] = FIXLN(abs(fft[0]) &lt;&lt; scale) * 2;
<a name="l00916"></a>00916 <span class="preprocessor">#else</span>
<a name="l00917"></a>00917 <span class="preprocessor"></span>        spec[0] = fft[0] * fft[0];
<a name="l00918"></a>00918 <span class="preprocessor">#endif</span>
<a name="l00919"></a>00919 <span class="preprocessor"></span>    }
<a name="l00920"></a>00920 
<a name="l00921"></a>00921     <span class="keywordflow">for</span> (j = 1; j &lt;= fftsize / 2; j++) {
<a name="l00922"></a>00922 <span class="preprocessor">#ifdef FIXED16</span>
<a name="l00923"></a>00923 <span class="preprocessor"></span>        int32 rr = fixlog(abs(fft[j]) &lt;&lt; scale) * 2;
<a name="l00924"></a>00924         int32 ii = fixlog(abs(fft[fftsize - j]) &lt;&lt; scale) * 2;
<a name="l00925"></a>00925         spec[j] = fe_log_add(rr, ii);
<a name="l00926"></a>00926 <span class="preprocessor">#elif defined(FIXED_POINT)</span>
<a name="l00927"></a>00927 <span class="preprocessor"></span>        int32 rr = FIXLN(abs(fft[j]) &lt;&lt; scale) * 2;
<a name="l00928"></a>00928         int32 ii = FIXLN(abs(fft[fftsize - j]) &lt;&lt; scale) * 2;
<a name="l00929"></a>00929         spec[j] = fe_log_add(rr, ii);
<a name="l00930"></a>00930 <span class="preprocessor">#else</span>
<a name="l00931"></a>00931 <span class="preprocessor"></span>        spec[j] = fft[j] * fft[j] + fft[fftsize - j] * fft[fftsize - j];
<a name="l00932"></a>00932 <span class="preprocessor">#endif</span>
<a name="l00933"></a>00933 <span class="preprocessor"></span>    }
<a name="l00934"></a>00934 }
<a name="l00935"></a>00935 
<a name="l00936"></a>00936 <span class="keyword">static</span> <span class="keywordtype">void</span>
<a name="l00937"></a>00937 fe_mel_spec(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> * fe)
<a name="l00938"></a>00938 {
<a name="l00939"></a>00939     <span class="keywordtype">int</span> whichfilt;
<a name="l00940"></a>00940     powspec_t *spec, *mfspec;
<a name="l00941"></a>00941 
<a name="l00942"></a>00942     <span class="comment">/* Convenience poitners. */</span>
<a name="l00943"></a>00943     spec = fe-&gt;spec;
<a name="l00944"></a>00944     mfspec = fe-&gt;mfspec;
<a name="l00945"></a>00945 
<a name="l00946"></a>00946     <span class="keywordflow">for</span> (whichfilt = 0; whichfilt &lt; fe-&gt;mel_fb-&gt;num_filters; whichfilt++) {
<a name="l00947"></a>00947         <span class="keywordtype">int</span> spec_start, filt_start, i;
<a name="l00948"></a>00948 
<a name="l00949"></a>00949         spec_start = fe-&gt;mel_fb-&gt;spec_start[whichfilt];
<a name="l00950"></a>00950         filt_start = fe-&gt;mel_fb-&gt;filt_start[whichfilt];
<a name="l00951"></a>00951 
<a name="l00952"></a>00952 <span class="preprocessor">#ifdef FIXED_POINT</span>
<a name="l00953"></a>00953 <span class="preprocessor"></span>        mfspec[whichfilt] = spec[spec_start] + fe-&gt;mel_fb-&gt;filt_coeffs[filt_start];
<a name="l00954"></a>00954         <span class="keywordflow">for</span> (i = 1; i &lt; fe-&gt;mel_fb-&gt;filt_width[whichfilt]; i++) {
<a name="l00955"></a>00955             mfspec[whichfilt] = fe_log_add(mfspec[whichfilt],
<a name="l00956"></a>00956                                            spec[spec_start + i] +
<a name="l00957"></a>00957                                            fe-&gt;mel_fb-&gt;filt_coeffs[filt_start + i]);
<a name="l00958"></a>00958         }
<a name="l00959"></a>00959 <span class="preprocessor">#else                           </span><span class="comment">/* !FIXED_POINT */</span>
<a name="l00960"></a>00960         mfspec[whichfilt] = 0;
<a name="l00961"></a>00961         <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;mel_fb-&gt;filt_width[whichfilt]; i++)
<a name="l00962"></a>00962             mfspec[whichfilt] +=
<a name="l00963"></a>00963                 spec[spec_start + i] * fe-&gt;mel_fb-&gt;filt_coeffs[filt_start + i];
<a name="l00964"></a>00964 #endif                          <span class="comment">/* !FIXED_POINT */</span>
<a name="l00965"></a>00965     }
<a name="l00966"></a>00966 }
<a name="l00967"></a>00967 
<a name="l00968"></a>00968 <span class="keyword">static</span> <span class="keywordtype">void</span>
<a name="l00969"></a>00969 fe_mel_cep(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> * fe, mfcc_t *mfcep)
<a name="l00970"></a>00970 {
<a name="l00971"></a>00971     int32 i;
<a name="l00972"></a>00972     powspec_t *mfspec;
<a name="l00973"></a>00973 
<a name="l00974"></a>00974     <span class="comment">/* Convenience pointer. */</span>
<a name="l00975"></a>00975     mfspec = fe-&gt;mfspec;
<a name="l00976"></a>00976 
<a name="l00977"></a>00977     <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;mel_fb-&gt;num_filters; ++i) {
<a name="l00978"></a>00978 <span class="preprocessor">#ifndef FIXED_POINT </span><span class="comment">/* It&#39;s already in log domain for fixed point */</span>
<a name="l00979"></a>00979         <span class="keywordflow">if</span> (mfspec[i] &gt; 0)
<a name="l00980"></a>00980             mfspec[i] = log(mfspec[i]);
<a name="l00981"></a>00981         <span class="keywordflow">else</span>                    <span class="comment">/* This number should be smaller than anything</span>
<a name="l00982"></a>00982 <span class="comment">                                 * else, but not too small, so as to avoid</span>
<a name="l00983"></a>00983 <span class="comment">                                 * infinities in the inverse transform (this is</span>
<a name="l00984"></a>00984 <span class="comment">                                 * the frequency-domain equivalent of</span>
<a name="l00985"></a>00985 <span class="comment">                                 * dithering) */</span>
<a name="l00986"></a>00986             mfspec[i] = -10.0;
<a name="l00987"></a>00987 <span class="preprocessor">#endif                          </span><span class="comment">/* !FIXED_POINT */</span>
<a name="l00988"></a>00988     }
<a name="l00989"></a>00989 
<a name="l00990"></a>00990     <span class="comment">/* If we are doing LOG_SPEC, then do nothing. */</span>
<a name="l00991"></a>00991     <span class="keywordflow">if</span> (fe-&gt;log_spec == RAW_LOG_SPEC) {
<a name="l00992"></a>00992         <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;feature_dimension; i++) {
<a name="l00993"></a>00993             mfcep[i] = (mfcc_t) mfspec[i];
<a name="l00994"></a>00994         }
<a name="l00995"></a>00995     }
<a name="l00996"></a>00996     <span class="comment">/* For smoothed spectrum, do DCT-II followed by (its inverse) DCT-III */</span>
<a name="l00997"></a>00997     <span class="keywordflow">else</span> <span class="keywordflow">if</span> (fe-&gt;log_spec == SMOOTH_LOG_SPEC) {
<a name="l00998"></a>00998         <span class="comment">/* FIXME: This is probably broken for fixed-point. */</span>
<a name="l00999"></a>00999         fe_dct2(fe, mfspec, mfcep, 0);
<a name="l01000"></a>01000         fe_dct3(fe, mfcep, mfspec);
<a name="l01001"></a>01001         <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;feature_dimension; i++) {
<a name="l01002"></a>01002             mfcep[i] = (mfcc_t) mfspec[i];
<a name="l01003"></a>01003         }
<a name="l01004"></a>01004     }
<a name="l01005"></a>01005     <span class="keywordflow">else</span> <span class="keywordflow">if</span> (fe-&gt;transform == DCT_II)
<a name="l01006"></a>01006         fe_dct2(fe, mfspec, mfcep, FALSE);
<a name="l01007"></a>01007     <span class="keywordflow">else</span> <span class="keywordflow">if</span> (fe-&gt;transform == DCT_HTK)
<a name="l01008"></a>01008         fe_dct2(fe, mfspec, mfcep, TRUE);
<a name="l01009"></a>01009     <span class="keywordflow">else</span>
<a name="l01010"></a>01010         fe_spec2cep(fe, mfspec, mfcep);
<a name="l01011"></a>01011 
<a name="l01012"></a>01012     <span class="keywordflow">return</span>;
<a name="l01013"></a>01013 }
<a name="l01014"></a>01014 
<a name="l01015"></a>01015 <span class="keywordtype">void</span>
<a name="l01016"></a>01016 fe_spec2cep(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> * fe, <span class="keyword">const</span> powspec_t * mflogspec, mfcc_t * mfcep)
<a name="l01017"></a>01017 {
<a name="l01018"></a>01018     int32 i, j, beta;
<a name="l01019"></a>01019 
<a name="l01020"></a>01020     <span class="comment">/* Compute C0 separately (its basis vector is 1) to avoid</span>
<a name="l01021"></a>01021 <span class="comment">     * costly multiplications. */</span>
<a name="l01022"></a>01022     mfcep[0] = mflogspec[0] / 2; <span class="comment">/* beta = 0.5 */</span>
<a name="l01023"></a>01023     <span class="keywordflow">for</span> (j = 1; j &lt; fe-&gt;mel_fb-&gt;num_filters; j++)
<a name="l01024"></a>01024         mfcep[0] += mflogspec[j]; <span class="comment">/* beta = 1.0 */</span>
<a name="l01025"></a>01025     mfcep[0] /= (frame_t) fe-&gt;mel_fb-&gt;num_filters;
<a name="l01026"></a>01026 
<a name="l01027"></a>01027     for (i = 1; i &lt; fe-&gt;num_cepstra; ++i) {
<a name="l01028"></a>01028         mfcep[i] = 0;
<a name="l01029"></a>01029         <span class="keywordflow">for</span> (j = 0; j &lt; fe-&gt;mel_fb-&gt;num_filters; j++) {
<a name="l01030"></a>01030             <span class="keywordflow">if</span> (j == 0)
<a name="l01031"></a>01031                 beta = 1;       <span class="comment">/* 0.5 */</span>
<a name="l01032"></a>01032             <span class="keywordflow">else</span>
<a name="l01033"></a>01033                 beta = 2;       <span class="comment">/* 1.0 */</span>
<a name="l01034"></a>01034             mfcep[i] += COSMUL(mflogspec[j],
<a name="l01035"></a>01035                                fe-&gt;mel_fb-&gt;mel_cosine[i][j]) * beta;
<a name="l01036"></a>01036         }
<a name="l01037"></a>01037         <span class="comment">/* Note that this actually normalizes by num_filters, like the</span>
<a name="l01038"></a>01038 <span class="comment">         * original Sphinx front-end, due to the doubled &#39;beta&#39; factor</span>
<a name="l01039"></a>01039 <span class="comment">         * above.  */</span>
<a name="l01040"></a>01040         mfcep[i] /= (frame_t) fe-&gt;mel_fb-&gt;num_filters * 2;
<a name="l01041"></a>01041     }
<a name="l01042"></a>01042 }
<a name="l01043"></a>01043 
<a name="l01044"></a>01044 <span class="keywordtype">void</span>
<a name="l01045"></a>01045 fe_dct2(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> * fe, <span class="keyword">const</span> powspec_t * mflogspec, mfcc_t * mfcep, <span class="keywordtype">int</span> htk)
<a name="l01046"></a>01046 {
<a name="l01047"></a>01047     int32 i, j;
<a name="l01048"></a>01048 
<a name="l01049"></a>01049     <span class="comment">/* Compute C0 separately (its basis vector is 1) to avoid</span>
<a name="l01050"></a>01050 <span class="comment">     * costly multiplications. */</span>
<a name="l01051"></a>01051     mfcep[0] = mflogspec[0];
<a name="l01052"></a>01052     <span class="keywordflow">for</span> (j = 1; j &lt; fe-&gt;mel_fb-&gt;num_filters; j++)
<a name="l01053"></a>01053         mfcep[0] += mflogspec[j];
<a name="l01054"></a>01054     <span class="keywordflow">if</span> (htk)
<a name="l01055"></a>01055         mfcep[0] = COSMUL(mfcep[0], fe-&gt;mel_fb-&gt;sqrt_inv_2n);
<a name="l01056"></a>01056     <span class="keywordflow">else</span> <span class="comment">/* sqrt(1/N) = sqrt(2/N) * 1/sqrt(2) */</span>
<a name="l01057"></a>01057         mfcep[0] = COSMUL(mfcep[0], fe-&gt;mel_fb-&gt;sqrt_inv_n);
<a name="l01058"></a>01058 
<a name="l01059"></a>01059     <span class="keywordflow">for</span> (i = 1; i &lt; fe-&gt;num_cepstra; ++i) {
<a name="l01060"></a>01060         mfcep[i] = 0;
<a name="l01061"></a>01061         <span class="keywordflow">for</span> (j = 0; j &lt; fe-&gt;mel_fb-&gt;num_filters; j++) {
<a name="l01062"></a>01062             mfcep[i] += COSMUL(mflogspec[j],
<a name="l01063"></a>01063                                 fe-&gt;mel_fb-&gt;mel_cosine[i][j]);
<a name="l01064"></a>01064         }
<a name="l01065"></a>01065         mfcep[i] = COSMUL(mfcep[i], fe-&gt;mel_fb-&gt;sqrt_inv_2n);
<a name="l01066"></a>01066     }
<a name="l01067"></a>01067 }
<a name="l01068"></a>01068 
<a name="l01069"></a>01069 <span class="keywordtype">void</span>
<a name="l01070"></a>01070 fe_lifter(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> *fe, mfcc_t *mfcep)
<a name="l01071"></a>01071 {
<a name="l01072"></a>01072     int32 i;
<a name="l01073"></a>01073 
<a name="l01074"></a>01074     <span class="keywordflow">if</span> (fe-&gt;mel_fb-&gt;lifter_val == 0)
<a name="l01075"></a>01075         <span class="keywordflow">return</span>;
<a name="l01076"></a>01076 
<a name="l01077"></a>01077     <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;num_cepstra; ++i) {
<a name="l01078"></a>01078         mfcep[i] = MFCCMUL(mfcep[i], fe-&gt;mel_fb-&gt;lifter[i]);
<a name="l01079"></a>01079     }
<a name="l01080"></a>01080 }
<a name="l01081"></a>01081 
<a name="l01082"></a>01082 <span class="keywordtype">void</span>
<a name="l01083"></a>01083 fe_dct3(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> * fe, <span class="keyword">const</span> mfcc_t * mfcep, powspec_t * mflogspec)
<a name="l01084"></a>01084 {
<a name="l01085"></a>01085     int32 i, j;
<a name="l01086"></a>01086 
<a name="l01087"></a>01087     <span class="keywordflow">for</span> (i = 0; i &lt; fe-&gt;mel_fb-&gt;num_filters; ++i) {
<a name="l01088"></a>01088         mflogspec[i] = COSMUL(mfcep[0], SQRT_HALF);
<a name="l01089"></a>01089         <span class="keywordflow">for</span> (j = 1; j &lt; fe-&gt;num_cepstra; j++) {
<a name="l01090"></a>01090             mflogspec[i] += COSMUL(mfcep[j],
<a name="l01091"></a>01091                                     fe-&gt;mel_fb-&gt;mel_cosine[j][i]);
<a name="l01092"></a>01092         }
<a name="l01093"></a>01093         mflogspec[i] = COSMUL(mflogspec[i], fe-&gt;mel_fb-&gt;sqrt_inv_2n);
<a name="l01094"></a>01094     }
<a name="l01095"></a>01095 }
<a name="l01096"></a>01096 
<a name="l01097"></a>01097 int32
<a name="l01098"></a>01098 fe_write_frame(<a class="code" href="structfe__s.html" title="Structure for the front-end computation.">fe_t</a> * fe, mfcc_t * fea)
<a name="l01099"></a>01099 {
<a name="l01100"></a>01100     fe_spec_magnitude(fe);
<a name="l01101"></a>01101     fe_mel_spec(fe);
<a name="l01102"></a>01102     fe_mel_cep(fe, fea);
<a name="l01103"></a>01103     fe_lifter(fe, fea);
<a name="l01104"></a>01104 
<a name="l01105"></a>01105     <span class="keywordflow">return</span> 1;
<a name="l01106"></a>01106 }
<a name="l01107"></a>01107 
<a name="l01108"></a>01108 <span class="keywordtype">void</span> *
<a name="l01109"></a>01109 fe_create_2d(int32 d1, int32 d2, int32 elem_size)
<a name="l01110"></a>01110 {
<a name="l01111"></a>01111     <span class="keywordflow">return</span> (<span class="keywordtype">void</span> *)<a class="code" href="ckd__alloc_8h.html#a949e7b50fcd9697b1563fa57f50e9c4f" title="Macro for __ckd_calloc_2d__.">ckd_calloc_2d</a>(d1, d2, elem_size);
<a name="l01112"></a>01112 }
<a name="l01113"></a>01113 
<a name="l01114"></a>01114 <span class="keywordtype">void</span>
<a name="l01115"></a>01115 fe_free_2d(<span class="keywordtype">void</span> *arr)
<a name="l01116"></a>01116 {
<a name="l01117"></a>01117     <a class="code" href="ckd__alloc_8h.html#a8246c071ac12e98b7e1df9fe6da15aef" title="Free a 2-D array (ptr) previously allocated by ckd_calloc_2d.">ckd_free_2d</a>((<span class="keywordtype">void</span> **)arr);
<a name="l01118"></a>01118 }
</pre></div></div>
</div>
  <div id="nav-path" class="navpath">
    <ul>
      <li class="navelem"><b>fe_sigproc.c</b>      </li>
      <li class="footer">Generated on Tue Apr 19 2011 for SphinxBase by&#160;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.7.3 </li>
    </ul>
  </div>

</body>
</html>