Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7c0f87383795ebbe514649b056eb6522 > files > 252

Django-doc-1.3.1-2.fc15.noarch.rpm

====================
Internationalization
====================

.. module:: django.utils.translation

Overview
========

The goal of internationalization is to allow a single Web application to offer
its content and functionality in multiple languages and locales.

For text translations, you, the Django developer, can accomplish this goal by
adding a minimal amount of hooks to your Python and templates. These hooks
are called **translation strings**. They tell Django: "This text should be
translated into the end user's language, if a translation for this text is
available in that language." It's your responsibility to mark translatable
strings; the system can only translate strings it knows about.

Django takes care of using these hooks to translate Web apps, on the fly,
according to users' language preferences.

Specifying translation strings: In Python code
==============================================

Standard translation
--------------------

Specify a translation string by using the function
:func:`~django.utils.translation.ugettext`. It's convention to import this
as a shorter alias, ``_``, to save typing.

.. note::
    Python's standard library ``gettext`` module installs ``_()`` into the
    global namespace, as an alias for ``gettext()``. In Django, we have chosen
    not to follow this practice, for a couple of reasons:

      1. For international character set (Unicode) support,
         :func:`~django.utils.translation.ugettext` is more useful than
         ``gettext()``. Sometimes, you should be using
         :func:`~django.utils.translation.ugettext_lazy` as the default
         translation method for a particular file. Without ``_()`` in the
         global namespace, the developer has to think about which is the
         most appropriate translation function.

      2. The underscore character (``_``) is used to represent "the previous
         result" in Python's interactive shell and doctest tests. Installing a
         global ``_()`` function causes interference. Explicitly importing
         ``ugettext()`` as ``_()`` avoids this problem.

.. highlightlang:: python

In this example, the text ``"Welcome to my site."`` is marked as a translation
string::

    from django.utils.translation import ugettext as _

    def my_view(request):
        output = _("Welcome to my site.")
        return HttpResponse(output)

Obviously, you could code this without using the alias. This example is
identical to the previous one::

    from django.utils.translation import ugettext

    def my_view(request):
        output = ugettext("Welcome to my site.")
        return HttpResponse(output)

Translation works on computed values. This example is identical to the previous
two::

    def my_view(request):
        words = ['Welcome', 'to', 'my', 'site.']
        output = _(' '.join(words))
        return HttpResponse(output)

Translation works on variables. Again, here's an identical example::

    def my_view(request):
        sentence = 'Welcome to my site.'
        output = _(sentence)
        return HttpResponse(output)

(The caveat with using variables or computed values, as in the previous two
examples, is that Django's translation-string-detecting utility,
``django-admin.py makemessages``, won't be able to find these strings. More on
``makemessages`` later.)

The strings you pass to ``_()`` or ``ugettext()`` can take placeholders,
specified with Python's standard named-string interpolation syntax. Example::

    def my_view(request, m, d):
        output = _('Today is %(month)s %(day)s.') % {'month': m, 'day': d}
        return HttpResponse(output)

This technique lets language-specific translations reorder the placeholder
text. For example, an English translation may be ``"Today is November 26."``,
while a Spanish translation may be ``"Hoy es 26 de Noviembre."`` -- with the
the month and the day placeholders swapped.

For this reason, you should use named-string interpolation (e.g., ``%(day)s``)
instead of positional interpolation (e.g., ``%s`` or ``%d``) whenever you
have more than a single parameter. If you used positional interpolation,
translations wouldn't be able to reorder placeholder text.

.. _translator-comments:

Comments for translators
------------------------

.. versionadded:: 1.3

If you would like to give translators hints about a translatable string, you
can add a comment prefixed with the ``Translators`` keyword on the line
preceding the string, e.g.::

    def my_view(request):
        # Translators: This message appears on the home page only
        output = ugettext("Welcome to my site.")

This also works in templates with the :ttag:`comment` tag:

.. code-block:: html+django

    {% comment %}Translators: This is a text of the base template {% endcomment %}

The comment will then appear in the resulting .po file and should also be
displayed by most translation tools.

Marking strings as no-op
------------------------

Use the function :func:`django.utils.translation.ugettext_noop()` to mark a
string as a translation string without translating it. The string is later
translated from a variable.

Use this if you have constant strings that should be stored in the source
language because they are exchanged over systems or users -- such as strings
in a database -- but should be translated at the last possible point in time,
such as when the string is presented to the user.

Pluralization
-------------

Use the function :func:`django.utils.translation.ungettext()` to specify
pluralized messages.

``ungettext`` takes three arguments: the singular translation string, the plural
translation string and the number of objects.

This function is useful when you need your Django application to be localizable
to languages where the number and complexity of `plural forms
<http://www.gnu.org/software/gettext/manual/gettext.html#Plural-forms>`_ is
greater than the two forms used in English ('object' for the singular and
'objects' for all the cases where ``count`` is different from one, irrespective
of its value.)

For example::

    from django.utils.translation import ungettext

    def hello_world(request, count):
        page = ungettext(
            'there is %(count)d object',
            'there are %(count)d objects',
        count) % {
            'count': count,
        }
        return HttpResponse(page)

In this example the number of objects is passed to the translation
languages as the ``count`` variable.

Lets see a slightly more complex usage example::

    from django.utils.translation import ungettext

    count = Report.objects.count()
    if count == 1:
        name = Report._meta.verbose_name
    else:
        name = Report._meta.verbose_name_plural

    text = ungettext(
            'There is %(count)d %(name)s available.',
            'There are %(count)d %(name)s available.',
            count
    ) % {
        'count': count,
        'name': name
    }

Here we reuse localizable, hopefully already translated literals (contained in
the ``verbose_name`` and ``verbose_name_plural`` model ``Meta`` options) for
other parts of the sentence so all of it is consistently based on the
cardinality of the elements at play.

.. _pluralization-var-notes:

.. note::

    When using this technique, make sure you use a single name for every
    extrapolated variable included in the literal. In the example above note how
    we used the ``name`` Python variable in both translation strings. This
    example would fail::

        from django.utils.translation import ungettext
        from myapp.models import Report

        count = Report.objects.count()
        d = {
            'count': count,
            'name': Report._meta.verbose_name,
            'plural_name': Report._meta.verbose_name_plural
        }
        text = ungettext(
                'There is %(count)d %(name)s available.',
                'There are %(count)d %(plural_name)s available.',
                count
        ) % d

    You would get a ``a format specification for argument 'name', as in
    'msgstr[0]', doesn't exist in 'msgid'`` error when running
    ``django-admin.py compilemessages``.

.. _contextual-markers:

Contextual markers
------------------

.. versionadded:: 1.3

Sometimes words have several meanings, such as ``"May"`` in English, which
refers to a month name and to a verb. To enable translators to translate
these words correctly in different contexts, you can use the
:func:`django.utils.translation.pgettext()` function, or the
:func:`django.utils.translation.npgettext()` function if the string needs
pluralization. Both take a context string as the first variable.

In the resulting .po file, the string will then appear as often as there are
different contextual markers for the same string (the context will appear on
the ``msgctxt`` line), allowing the translator to give a different translation
for each of them.

For example::

    from django.utils.translation import pgettext

    month = pgettext("month name", "May")

or::

    from django.utils.translation import pgettext_lazy

    class MyThing(models.Model):
        name = models.CharField(help_text=pgettext_lazy(
            'help text for MyThing model', 'This is the help text'))

will appear in the .po file as:

.. code-block:: po

    msgctxt "month name"
    msgid "May"
    msgstr ""

.. _lazy-translations:

Lazy translation
----------------

Use the function :func:`django.utils.translation.ugettext_lazy()` to translate
strings lazily -- when the value is accessed rather than when the
``ugettext_lazy()`` function is called.

For example, to translate a model's ``help_text``, do the following::

    from django.utils.translation import ugettext_lazy

    class MyThing(models.Model):
        name = models.CharField(help_text=ugettext_lazy('This is the help text'))

In this example, ``ugettext_lazy()`` stores a lazy reference to the string --
not the actual translation. The translation itself will be done when the string
is used in a string context, such as template rendering on the Django admin
site.

The result of a ``ugettext_lazy()`` call can be used wherever you would use a
unicode string (an object with type ``unicode``) in Python. If you try to use
it where a bytestring (a ``str`` object) is expected, things will not work as
expected, since a ``ugettext_lazy()`` object doesn't know how to convert
itself to a bytestring. You can't use a unicode string inside a bytestring,
either, so this is consistent with normal Python behavior. For example::

    # This is fine: putting a unicode proxy into a unicode string.
    u"Hello %s" % ugettext_lazy("people")

    # This will not work, since you cannot insert a unicode object
    # into a bytestring (nor can you insert our unicode proxy there)
    "Hello %s" % ugettext_lazy("people")

If you ever see output that looks like ``"hello
<django.utils.functional...>"``, you have tried to insert the result of
``ugettext_lazy()`` into a bytestring. That's a bug in your code.

If you don't like the verbose name ``ugettext_lazy``, you can just alias it as
``_`` (underscore), like so::

    from django.utils.translation import ugettext_lazy as _

    class MyThing(models.Model):
        name = models.CharField(help_text=_('This is the help text'))

Always use lazy translations in :doc:`Django models </topics/db/models>`.
Field names and table names should be marked for translation (otherwise, they
won't be translated in the admin interface). This means writing explicit
``verbose_name`` and ``verbose_name_plural`` options in the ``Meta`` class,
though, rather than relying on Django's default determination of
``verbose_name`` and ``verbose_name_plural`` by looking at the model's class
name::

    from django.utils.translation import ugettext_lazy as _

    class MyThing(models.Model):
        name = models.CharField(_('name'), help_text=_('This is the help text'))

        class Meta:
            verbose_name = _('my thing')
            verbose_name_plural = _('mythings')

Notes on model classes translation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Your model classes may not only contain normal fields: you may have relations
(with a ``ForeignKey`` field) or additional model methods you may use for
columns in the Django admin site.

If you have models with foreign keys and you use the Django admin site, you can
provide translations for the relation itself by using the ``verbose_name``
parameter on the ``ForeignKey`` object::

    class MyThing(models.Model):
        kind = models.ForeignKey(ThingKind, related_name='kinds',
                                 verbose_name=_('kind'))

As you would do for the ``verbose_name`` and ``verbose_name_plural`` settings of
a model Meta class, you should provide a lowercase verbose name text for the
relation as Django will automatically titlecase it when required.

For model methods, you can provide translations to Django and the admin site
with the ``short_description`` parameter set on the corresponding method::

    class MyThing(models.Model):
        kind = models.ForeignKey(ThingKind, related_name='kinds',
                                 verbose_name=_('kind'))

        def is_mouse(self):
            return self.kind.type == MOUSE_TYPE
        is_mouse.short_description = _('Is it a mouse?')

As always with model classes translations, don't forget to use the lazy
translation method!

Working with lazy translation objects
-------------------------------------

Using ``ugettext_lazy()`` and ``ungettext_lazy()`` to mark strings in models
and utility functions is a common operation. When you're working with these
objects elsewhere in your code, you should ensure that you don't accidentally
convert them to strings, because they should be converted as late as possible
(so that the correct locale is in effect). This necessitates the use of a
couple of helper functions.

Joining strings: string_concat()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Standard Python string joins (``''.join([...])``) will not work on lists
containing lazy translation objects. Instead, you can use
:func:`django.utils.translation.string_concat()`, which creates a lazy object
that concatenates its contents *and* converts them to strings only when the
result is included in a string. For example::

    from django.utils.translation import string_concat
    ...
    name = ugettext_lazy(u'John Lennon')
    instrument = ugettext_lazy(u'guitar')
    result = string_concat(name, ': ', instrument)

In this case, the lazy translations in ``result`` will only be converted to
strings when ``result`` itself is used in a string (usually at template
rendering time).

Localized names of languages
============================

.. function:: get_language_info

.. versionadded:: 1.3

The ``get_language_info()`` function provides detailed information about
languages::

    >>> from django.utils.translation import get_language_info
    >>> li = get_language_info('de')
    >>> print li['name'], li['name_local'], li['bidi']
    German Deutsch False

The ``name`` and ``name_local`` attributes of the dictionary contain the name of
the language in English and in the language itself, respectively.  The ``bidi``
attribute is True only for bi-directional languages.

The source of the language information is the ``django.conf.locale`` module.
Similar access to this information is available for template code. See below.

.. _specifying-translation-strings-in-template-code:

Specifying translation strings: In template code
================================================

.. highlightlang:: html+django

Translations in :doc:`Django templates </topics/templates>` uses two template
tags and a slightly different syntax than in Python code. To give your template
access to these tags, put ``{% load i18n %}`` toward the top of your template.

``trans`` template tag
----------------------

The ``{% trans %}`` template tag translates either a constant string
(enclosed in single or double quotes) or variable content::

    <title>{% trans "This is the title." %}</title>
    <title>{% trans myvar %}</title>

If the ``noop`` option is present, variable lookup still takes place but the
translation is skipped. This is useful when "stubbing out" content that will
require translation in the future::

    <title>{% trans "myvar" noop %}</title>

Internally, inline translations use an
:func:`~django.utils.translation.ugettext` call.

In case a template var (``myvar`` above) is passed to the tag, the tag will
first resolve such variable to a string at run-time and then look up that
string in the message catalogs.

It's not possible to mix a template variable inside a string within ``{% trans
%}``. If your translations require strings with variables (placeholders), use
``{% blocktrans %}`` instead.

``blocktrans`` template tag
---------------------------

.. versionchanged:: 1.3
   New keyword argument format.

Contrarily to the ``trans`` tag, the ``blocktrans`` tag allows you to mark
complex sentences consisting of literals and variable content for translation
by making use of placeholders::

    {% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

To translate a template expression -- say, accessing object attributes or
using template filters -- you need to bind the expression to a local variable
for use within the translation block. Examples::

    {% blocktrans with amount=article.price %}
    That will cost $ {{ amount }}.
    {% endblocktrans %}

    {% blocktrans with myvar=value|filter %}
    This will have {{ myvar }} inside.
    {% endblocktrans %}

You can use multiple expressions inside a single ``blocktrans`` tag::

    {% blocktrans with book_t=book|title and author_t=author|title %}
    This is {{ book_t }} by {{ author_t }}
    {% endblocktrans %}

.. note:: The previous more verbose format is still supported:
   ``{% blocktrans with book|title as book_t and author|title as author_t %}``

This tag also provides for pluralization. To use it:

    * Designate and bind a counter value with the name ``count``. This value will
      be the one used to select the right plural form.

    * Specify both the singular and plural forms separating them with the
      ``{% plural %}`` tag within the ``{% blocktrans %}`` and
      ``{% endblocktrans %}`` tags.

An example::

    {% blocktrans count counter=list|length %}
    There is only one {{ name }} object.
    {% plural %}
    There are {{ counter }} {{ name }} objects.
    {% endblocktrans %}

A more complex example::

    {% blocktrans with amount=article.price count years=i.length %}
    That will cost $ {{ amount }} per year.
    {% plural %}
    That will cost $ {{ amount }} per {{ years }} years.
    {% endblocktrans %}

When you use both the pluralization feature and bind values to local variables
in addition to the counter value, keep in mind that the ``blocktrans``
construct is internally converted to an ``ungettext`` call. This means the
same :ref:`notes regarding ungettext variables <pluralization-var-notes>`
apply.

Reverse URL lookups cannot be carried out within the ``blocktrans`` and should
be retrieved (and stored) beforehand::

    {% url path.to.view arg arg2 as the_url %}
    {% blocktrans %}
    This is a URL: {{ the_url }}
    {% endblocktrans %}

.. _template-translation-vars:

Other tags
----------

Each ``RequestContext`` has access to three translation-specific variables:

    * ``LANGUAGES`` is a list of tuples in which the first element is the
      :term:`language code` and the second is the language name (translated into
      the currently active locale).

    * ``LANGUAGE_CODE`` is the current user's preferred language, as a string.
      Example: ``en-us``. (See :ref:`how-django-discovers-language-preference`.)

    * ``LANGUAGE_BIDI`` is the current locale's direction. If True, it's a
      right-to-left language, e.g.: Hebrew, Arabic. If False it's a
      left-to-right language, e.g.: English, French, German etc.

If you don't use the ``RequestContext`` extension, you can get those values with
three tags::

    {% get_current_language as LANGUAGE_CODE %}
    {% get_available_languages as LANGUAGES %}
    {% get_current_language_bidi as LANGUAGE_BIDI %}

These tags also require a ``{% load i18n %}``.

Translation hooks are also available within any template block tag that accepts
constant strings. In those cases, just use ``_()`` syntax to specify a
translation string::

    {% some_special_tag _("Page not found") value|yesno:_("yes,no") %}

In this case, both the tag and the filter will see the already-translated
string, so they don't need to be aware of translations.

.. note::
    In this example, the translation infrastructure will be passed the string
    ``"yes,no"``, not the individual strings ``"yes"`` and ``"no"``. The
    translated string will need to contain the comma so that the filter
    parsing code knows how to split up the arguments. For example, a German
    translator might translate the string ``"yes,no"`` as ``"ja,nein"``
    (keeping the comma intact).

.. versionadded:: 1.3

You can also retrieve information about any of the available languages using
provided template tags and filters. To get information about a single language,
use the ``{% get_language_info %}`` tag::

    {% get_language_info for LANGUAGE_CODE as lang %}
    {% get_language_info for "pl" as lang %}

You can then access the information::

    Language code: {{ lang.code }}<br />
    Name of language: {{ lang.name_local }}<br />
    Name in English: {{ lang.name }}<br />
    Bi-directional: {{ lang.bidi }}

You can also use the ``{% get_language_info_list %}`` template tag to retrieve
information for a list of languages (e.g. active languages as specified in
:setting:`LANGUAGES`). See :ref:`the section about the set_language redirect
view <set_language-redirect-view>` for an example of how to display a language
selector using ``{% get_language_info_list %}``.

In addition to :setting:`LANGUAGES` style nested tuples,
``{% get_language_info_list %}`` supports simple lists of language codes.
If you do this in your view:

.. code-block:: python

    return render_to_response('mytemplate.html', {
        'available_languages': ['en', 'es', 'fr'],
    }, RequestContext(request))

you can iterate over those languages in the template::

  {% get_language_info_list for available_languages as langs %}
  {% for lang in langs %} ... {% endfor %}

There are also simple filters available for convenience:

    * ``{{ LANGUAGE_CODE|language_name }}`` ("German")
    * ``{{ LANGUAGE_CODE|language_name_local }}`` ("Deutsch")
    * ``{{ LANGUAGE_CODE|bidi }}`` (False)

.. _Django templates: ../templates_python/

Specifying translation strings: In JavaScript code
==================================================

.. highlightlang:: python

Adding translations to JavaScript poses some problems:

    * JavaScript code doesn't have access to a ``gettext`` implementation.

    * JavaScript code doesn't have access to .po or .mo files; they need to be
      delivered by the server.

    * The translation catalogs for JavaScript should be kept as small as
      possible.

Django provides an integrated solution for these problems: It passes the
translations into JavaScript, so you can call ``gettext``, etc., from within
JavaScript.

.. _javascript_catalog-view:

The ``javascript_catalog`` view
-------------------------------

.. module:: django.views.i18n

.. function:: javascript_catalog(request, domain='djangojs', packages=None)

The main solution to these problems is the :meth:`django.views.i18n.javascript_catalog`
view, which sends out a JavaScript code library with functions that mimic the
``gettext`` interface, plus an array of translation strings. Those translation
strings are taken from applications or Django core, according to what you
specify in either the info_dict or the URL. Paths listed in
:setting:`LOCALE_PATHS` are also included.

You hook it up like this::

    js_info_dict = {
        'packages': ('your.app.package',),
    }

    urlpatterns = patterns('',
        (r'^jsi18n/$', 'django.views.i18n.javascript_catalog', js_info_dict),
    )

Each string in ``packages`` should be in Python dotted-package syntax (the
same format as the strings in :setting:`INSTALLED_APPS`) and should refer to a
package that contains a ``locale`` directory. If you specify multiple packages,
all those catalogs are merged into one catalog. This is useful if you have
JavaScript that uses strings from different applications.

The precedence of translations is such that the packages appearing later in the
``packages`` argument have higher precedence than the ones appearing at the
beginning, this is important in the case of clashing translations for the same
literal.

By default, the view uses the ``djangojs`` gettext domain. This can be
changed by altering the ``domain`` argument.

You can make the view dynamic by putting the packages into the URL pattern::

    urlpatterns = patterns('',
        (r'^jsi18n/(?P<packages>\S+?)/$', 'django.views.i18n.javascript_catalog'),
    )

With this, you specify the packages as a list of package names delimited by '+'
signs in the URL. This is especially useful if your pages use code from
different apps and this changes often and you don't want to pull in one big
catalog file. As a security measure, these values can only be either
``django.conf`` or any package from the :setting:`INSTALLED_APPS` setting.

The JavaScript translations found in the paths listed in the
:setting:`LOCALE_PATHS` setting are also always included. To keep consistency
with the translations lookup order algorithm used for Python and templates, the
directories listed in :setting:`LOCALE_PATHS` have the highest precedence with
the ones appearing first having higher precedence than the ones appearing
later.

.. versionchanged:: 1.3
    Directories listed in :setting:`LOCALE_PATHS` weren't included in the
    lookup algorithm until version 1.3.

Using the JavaScript translation catalog
----------------------------------------

.. highlightlang:: javascript

To use the catalog, just pull in the dynamically generated script like this:

.. code-block:: html+django

    <script type="text/javascript" src="{% url django.views.i18n.javascript_catalog %}"></script>

This uses reverse URL lookup to find the URL of the JavaScript catalog view.
When the catalog is loaded, your JavaScript code can use the standard
``gettext`` interface to access it::

    document.write(gettext('this is to be translated'));

There is also an ``ngettext`` interface::

    var object_cnt = 1 // or 0, or 2, or 3, ...
    s = ngettext('literal for the singular case',
            'literal for the plural case', object_cnt);

and even a string interpolation function::

    function interpolate(fmt, obj, named);

The interpolation syntax is borrowed from Python, so the ``interpolate``
function supports both positional and named interpolation:

    * Positional interpolation: ``obj`` contains a JavaScript Array object
      whose elements values are then sequentially interpolated in their
      corresponding ``fmt`` placeholders in the same order they appear.
      For example::

        fmts = ngettext('There is %s object. Remaining: %s',
                'There are %s objects. Remaining: %s', 11);
        s = interpolate(fmts, [11, 20]);
        // s is 'There are 11 objects. Remaining: 20'

    * Named interpolation: This mode is selected by passing the optional
      boolean ``named`` parameter as true. ``obj`` contains a JavaScript
      object or associative array. For example::

        d = {
            count: 10,
            total: 50
        };

        fmts = ngettext('Total: %(total)s, there is %(count)s object',
        'there are %(count)s of a total of %(total)s objects', d.count);
        s = interpolate(fmts, d, true);

You shouldn't go over the top with string interpolation, though: this is still
JavaScript, so the code has to make repeated regular-expression substitutions.
This isn't as fast as string interpolation in Python, so keep it to those
cases where you really need it (for example, in conjunction with ``ngettext``
to produce proper pluralizations).

.. _set_language-redirect-view:

The ``set_language`` redirect view
==================================

.. highlightlang:: python

.. function:: set_language(request)

As a convenience, Django comes with a view, :func:`django.views.i18n.set_language`,
that sets a user's language preference and redirects back to the previous page.

Activate this view by adding the following line to your URLconf::

    (r'^i18n/', include('django.conf.urls.i18n')),

(Note that this example makes the view available at ``/i18n/setlang/``.)

The view expects to be called via the ``POST`` method, with a ``language``
parameter set in request. If session support is enabled, the view
saves the language choice in the user's session. Otherwise, it saves the
language choice in a cookie that is by default named ``django_language``.
(The name can be changed through the :setting:`LANGUAGE_COOKIE_NAME` setting.)

After setting the language choice, Django redirects the user, following this
algorithm:

    * Django looks for a ``next`` parameter in the ``POST`` data.
    * If that doesn't exist, or is empty, Django tries the URL in the
      ``Referrer`` header.
    * If that's empty -- say, if a user's browser suppresses that header --
      then the user will be redirected to ``/`` (the site root) as a fallback.

Here's example HTML template code:

.. code-block:: html+django

    <form action="/i18n/setlang/" method="post">
    {% csrf_token %}
    <input name="next" type="hidden" value="/next/page/" />
    <select name="language">
    {% get_language_info_list for LANGUAGES as languages %}
    {% for language in languages %}
    <option value="{{ language.code }}">{{ language.name_local }} ({{ language.code }})</option>
    {% endfor %}
    </select>
    <input type="submit" value="Go" />
    </form>