Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 1292

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>beilinson -- Vector bundle map associated to the Beilinson monad</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_bgg.html">next</a> | <a href="index.html">previous</a> | <a href="_bgg.html">forward</a> | <a href="index.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>beilinson -- Vector bundle map associated to the Beilinson monad</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>beilinson(m,S)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>m</tt>, <span>a <a href="../../Macaulay2Doc/html/___Matrix.html">matrix</a></span>, a presentation matrix for a module over an exterior algebra <tt>E</tt></span></li>
<li><span><tt>S</tt>, <span>a <a href="../../Macaulay2Doc/html/___Polynomial__Ring.html">polynomial ring</a></span>, polynomial ring with the same number of variables as <tt>E</tt></span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>a <a href="../../Macaulay2Doc/html/___Matrix.html">matrix</a></span>, vector bundle map</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div>The BGG correspondence is an equivalence between complexes of modules over exterior algebras and complexes of coherent sheaves over projective spaces. This function takes as input a map between two free <tt>E</tt>-modules, and returns the associate map between direct sums of exterior powers of cotangent bundles. In particular, it is useful to construct the Belinson monad for a coherent sheaf.<table class="examples"><tr><td><pre>i1 : S = ZZ/32003[x_0..x_2]; </pre>
</td></tr>
<tr><td><pre>i2 : E = ZZ/32003[e_0..e_2, SkewCommutative=>true];</pre>
</td></tr>
<tr><td><pre>i3 : alphad = map(E^1,E^{2:-1},{{e_1,e_2}});

             1       2
o3 : Matrix E  &lt;--- E</pre>
</td></tr>
<tr><td><pre>i4 : alpha = map(E^{2:-1},E^{1:-2},{{e_1},{e_2}});

             2       1
o4 : Matrix E  &lt;--- E</pre>
</td></tr>
<tr><td><pre>i5 : alphad' = beilinson(alphad,S)

o5 = | x_0 0 -x_2 0 x_0 x_1 |

o5 : Matrix</pre>
</td></tr>
<tr><td><pre>i6 : alpha' = beilinson(alpha,S)

o6 = {1} | 0  |
     {1} | -1 |
     {1} | 0  |
     {1} | 1  |
     {1} | 0  |
     {1} | 0  |

o6 : Matrix</pre>
</td></tr>
<tr><td><pre>i7 : F = prune homology(alphad',alpha')

o7 = cokernel {1} | x_1^2-x_2^2 |
              {1} | x_1x_2      |
              {2} | -x_0        |

                            3
o7 : S-module, quotient of S</pre>
</td></tr>
<tr><td><pre>i8 : betti F

            0 1
o8 = total: 3 1
         1: 2 .
         2: 1 1

o8 : BettiTally</pre>
</td></tr>
<tr><td><pre>i9 : cohomologyTable(presentation F,E,-2,3)

        -2 -1 0 1 2  3  4
o9 = 2:  7  2 . . .  .  .
     1:  .  1 2 1 .  .  .
     0:  .  . . 2 7 14 23

o9 : CohomologyTally</pre>
</td></tr>
</table>
As the next example, we construct the monad of the Horrock-Mumford bundle:<table class="examples"><tr><td><pre>i10 : S = ZZ/32003[x_0..x_4]; </pre>
</td></tr>
<tr><td><pre>i11 : E = ZZ/32003[e_0..e_4, SkewCommutative=>true];</pre>
</td></tr>
<tr><td><pre>i12 : alphad = map(E^5,E^{2:-2},{{e_4*e_1,e_2*e_3},{e_0*e_2,e_3*e_4},{e_1*e_3,e_4*e_0},{e_2*e_4,e_0*e_1},{e_3*e_0,e_1*e_2}})

o12 = | -e_1e_4 e_2e_3  |
      | e_0e_2  e_3e_4  |
      | e_1e_3  -e_0e_4 |
      | e_2e_4  e_0e_1  |
      | -e_0e_3 e_1e_2  |

              5       2
o12 : Matrix E  &lt;--- E</pre>
</td></tr>
<tr><td><pre>i13 : alpha = syz alphad

o13 = {2} | e_0e_1  e_2e_3 e_0e_4 e_1e_2 -e_3e_4 |
      {2} | -e_2e_4 e_1e_4 e_1e_3 e_0e_3 e_0e_2  |

              2       5
o13 : Matrix E  &lt;--- E</pre>
</td></tr>
<tr><td><pre>i14 : alphad' = beilinson(alphad,S)

o14 = | 0   0    0    0   x_0 0    -x_2 0   -x_3 0   0    0    -x_0 -x_1 0   
      | x_1 0    -x_3 0   0   -x_4 0    0   0    0   0    0    0    0    0   
      | 0   -x_0 0    x_2 0   0    0    0   -x_4 0   0    0    0    0    -x_1
      | 0   0    0    0   0   -x_0 -x_1 0   0    x_3 -x_2 -x_3 0    0    -x_4
      | 0   -x_1 -x_2 0   0   0    0    x_4 0    0   -x_0 0    0    -x_3 0   
      -----------------------------------------------------------------------
      0    0    0    0    -x_4 |
      0    0    -x_0 -x_1 -x_2 |
      -x_2 0    -x_3 0    0    |
      0    0    0    0    0    |
      0    -x_4 0    0    0    |

o14 : Matrix</pre>
</td></tr>
<tr><td><pre>i15 : alpha' = beilinson(alpha,S)

o15 = {1} | 0  0  0 0  1 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  1 0  0 |
      {1} | 0  -1 0 0  0 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  0 -1 0 |
      {1} | 0  0  0 0  0 |
      {1} | -1 0  0 0  0 |
      {1} | 0  0  0 0  0 |
      {1} | -1 0  0 0  0 |
      {1} | 0  -1 0 0  0 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  1 0  0 |
      {1} | 0  0  0 -1 0 |
      {1} | 0  0  0 0  0 |
      {1} | 0  0  0 0  1 |
      {1} | 0  0  0 0  0 |

o15 : Matrix</pre>
</td></tr>
<tr><td><pre>i16 : F = prune homology(alphad',alpha');</pre>
</td></tr>
<tr><td><pre>i17 : betti res F

              0  1  2 3
o17 = total: 19 35 20 2
          3:  4  .  . .
          4: 15 35 20 .
          5:  .  .  . 2

o17 : BettiTally</pre>
</td></tr>
<tr><td><pre>i18 : regularity F

o18 = 5</pre>
</td></tr>
<tr><td><pre>i19 : cohomologyTable(presentation F,E,-6,6)

          -6  -5 -4 -3 -2 -1 0 1  2  3  4   5   6   7
o19 = 4: 210 100 35  4  .  . . .  .  .  .   .   .   .
      3:   .   .  2 10 10  5 . .  .  .  .   .   .   .
      2:   .   .  .  .  .  . 2 .  .  .  .   .   .   .
      1:   .   .  .  .  .  . . 5 10 10  2   .   .   .
      0:   .   .  .  .  .  . . .  .  4 35 100 210 380

o19 : CohomologyTally</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_sym__Ext.html" title="the first differential of the complex R(M)">symExt</a> -- the first differential of the complex R(M)</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>beilinson</tt> :</h2>
<ul><li>beilinson(Matrix,PolynomialRing)</li>
</ul>
</div>
</div>
</body>
</html>