Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 1377

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>bruns -- Returns an ideal generated by three elements whose 2nd syzygy module is isomorphic to a given module</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_bruns__Ideal.html">next</a> | <a href="index.html">previous</a> | <a href="_bruns__Ideal.html">forward</a> | <a href="index.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>bruns -- Returns an ideal generated by three elements whose 2nd syzygy module is isomorphic to a given module</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>j= bruns M or  j= bruns f</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>M</tt>, <span>a <a href="../../Macaulay2Doc/html/___Module.html">module</a></span>, a second syzygy (graded) module</span></li>
<li><span><tt>f</tt>, <span>a <a href="../../Macaulay2Doc/html/___Matrix.html">matrix</a></span>, whose cokernel is a second syzygy (graded) module</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>j</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, a homogeneous ideal generated by three elements whose second syzygy module is isomorphic to M, or image f</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><div>This function takes a graded module M over a polynomial ring S that is a second syzygy, and returns a three-generator ideal j whose second syzygy is M, so that the resolution of S/j, from the third step, is isomorphic to the resolution of M. Alternately <tt>bruns</tt> takes a matrix whose cokernel is a second syzygy, and finds a 3-generator ideal whose second syzygy is the image of that matrix.</div>
<table class="examples"><tr><td><pre>i1 : kk=ZZ/32003

o1 = kk

o1 : QuotientRing</pre>
</td></tr>
<tr><td><pre>i2 : S=kk[a..d]

o2 = S

o2 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i3 : i=ideal(a^2,b^2,c^2, d^2)

             2   2   2   2
o3 = ideal (a , b , c , d )

o3 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i4 : betti (F=res i)

            0 1 2 3 4
o4 = total: 1 4 6 4 1
         0: 1 . . . .
         1: . 4 . . .
         2: . . 6 . .
         3: . . . 4 .
         4: . . . . 1

o4 : BettiTally</pre>
</td></tr>
<tr><td><pre>i5 : M = image F.dd_3

o5 = image {4} | c2  d2  0   0   |
           {4} | -b2 0   d2  0   |
           {4} | a2  0   0   d2  |
           {4} | 0   -b2 -c2 0   |
           {4} | 0   a2  0   -c2 |
           {4} | 0   0   a2  b2  |

                             6
o5 : S-module, submodule of S</pre>
</td></tr>
<tr><td><pre>i6 : f=F.dd_3

o6 = {4} | c2  d2  0   0   |
     {4} | -b2 0   d2  0   |
     {4} | a2  0   0   d2  |
     {4} | 0   -b2 -c2 0   |
     {4} | 0   a2  0   -c2 |
     {4} | 0   0   a2  b2  |

             6       4
o6 : Matrix S  &lt;--- S</pre>
</td></tr>
<tr><td><pre>i7 : j=bruns M;

o7 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i8 : betti res j -- the ideal has 3 generators

            0 1 2 3 4
o8 = total: 1 3 5 4 1
         0: 1 . . . .
         1: . . . . .
         2: . . . . .
         3: . 3 . . .
         4: . . . . .
         5: . . . . .
         6: . . 5 . .
         7: . . . 4 .
         8: . . . . 1

o8 : BettiTally</pre>
</td></tr>
</table>
<div>Here is a more complicated example, also involving a complete intersection.  You can see that columns three and four in the two Betti diagrams are the same.</div>
<table class="examples"><tr><td><pre>i9 : kk=ZZ/32003

o9 = kk

o9 : QuotientRing</pre>
</td></tr>
<tr><td><pre>i10 : S=kk[a..d]

o10 = S

o10 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i11 : i=ideal(a^2,b^3,c^4, d^5)

              2   3   4   5
o11 = ideal (a , b , c , d )

o11 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i12 : betti (F=res i)

             0 1 2 3 4
o12 = total: 1 4 6 4 1
          0: 1 . . . .
          1: . 1 . . .
          2: . 1 . . .
          3: . 1 1 . .
          4: . 1 1 . .
          5: . . 2 . .
          6: . . 1 1 .
          7: . . 1 1 .
          8: . . . 1 .
          9: . . . 1 .
         10: . . . . 1

o12 : BettiTally</pre>
</td></tr>
<tr><td><pre>i13 : M = image F.dd_3

o13 = image {5} | c4  d5  0   0   |
            {6} | -b3 0   d5  0   |
            {7} | a2  0   0   d5  |
            {7} | 0   -b3 -c4 0   |
            {8} | 0   a2  0   -c4 |
            {9} | 0   0   a2  b3  |

                              6
o13 : S-module, submodule of S</pre>
</td></tr>
<tr><td><pre>i14 : f=F.dd_3

o14 = {5} | c4  d5  0   0   |
      {6} | -b3 0   d5  0   |
      {7} | a2  0   0   d5  |
      {7} | 0   -b3 -c4 0   |
      {8} | 0   a2  0   -c4 |
      {9} | 0   0   a2  b3  |

              6       4
o14 : Matrix S  &lt;--- S</pre>
</td></tr>
<tr><td><pre>i15 : j1=bruns f;

o15 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i16 : betti res j1

             0 1 2 3 4
o16 = total: 1 3 5 4 1
          0: 1 . . . .
          1: . . . . .
          2: . . . . .
          3: . . . . .
          4: . . . . .
          5: . . . . .
          6: . . . . .
          7: . . . . .
          8: . 1 . . .
          9: . 2 . . .
         10: . . . . .
         11: . . . . .
         12: . . . . .
         13: . . . . .
         14: . . . . .
         15: . . 1 . .
         16: . . 1 . .
         17: . . 2 . .
         18: . . 1 1 .
         19: . . . 1 .
         20: . . . 1 .
         21: . . . 1 .
         22: . . . . 1

o16 : BettiTally</pre>
</td></tr>
<tr><td><pre>i17 : j=bruns M;

o17 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i18 : betti res j

             0 1 2 3 4
o18 = total: 1 3 5 4 1
          0: 1 . . . .
          1: . . . . .
          2: . . . . .
          3: . . . . .
          4: . . . . .
          5: . . . . .
          6: . . . . .
          7: . . . . .
          8: . 1 . . .
          9: . 2 . . .
         10: . . . . .
         11: . . . . .
         12: . . . . .
         13: . . . . .
         14: . . . . .
         15: . . 1 . .
         16: . . 1 . .
         17: . . 2 . .
         18: . . 1 1 .
         19: . . . 1 .
         20: . . . 1 .
         21: . . . 1 .
         22: . . . . 1

o18 : BettiTally</pre>
</td></tr>
</table>
<div>In the next example, we perform the "Brunsification" of a rational curve.</div>
<table class="examples"><tr><td><pre>i19 : kk=ZZ/32003

o19 = kk

o19 : QuotientRing</pre>
</td></tr>
<tr><td><pre>i20 : S=kk[a..e]

o20 = S

o20 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i21 : i=monomialCurveIdeal(S, {1,3,4,5})

              2                    2                            2    3    2
o21 = ideal (d  - c*e, b*d - a*e, c  - b*e, b*c - a*d, a*c*d - b e, b  - a c)

o21 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i22 : betti (F=res i)

             0 1 2 3 4
o22 = total: 1 5 8 5 1
          0: 1 . . . .
          1: . 4 2 . .
          2: . 1 6 5 1

o22 : BettiTally</pre>
</td></tr>
<tr><td><pre>i23 : time j=bruns F.dd_3;
     -- used 0.229965 seconds

o23 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i24 : betti res j

             0 1 2 3 4
o24 = total: 1 3 6 5 1
          0: 1 . . . .
          1: . . . . .
          2: . . . . .
          3: . . . . .
          4: . 3 . . .
          5: . . . . .
          6: . . . . .
          7: . . 2 . .
          8: . . 4 5 1

o24 : BettiTally</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_bruns__Ideal.html" title="Returns an ideal generated by three elements whose 2nd syzygy module agrees with the given ideal">brunsIdeal</a> -- Returns an ideal generated by three elements whose 2nd syzygy module agrees with the given ideal</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>bruns</tt> :</h2>
<ul><li>bruns(Matrix)</li>
<li>bruns(Module)</li>
</ul>
</div>
</div>
</body>
</html>