Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 1869

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>smallestCycleSize -- returns the size of the smallest induced cycle of a graph</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_spanning__Tree.html">next</a> | <a href="_simplicial__Complex__To__Hyper__Graph.html">previous</a> | <a href="_spanning__Tree.html">forward</a> | <a href="_simplicial__Complex__To__Hyper__Graph.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>smallestCycleSize -- returns the size of the smallest induced cycle of a graph</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>s = smallestCycleSize(G)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>G</tt>, <span>a <a href="___Graph.html">graph</a></span>, the input</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>s</tt>, <span>an <a href="../../Macaulay2Doc/html/___Z__Z.html">integer</a></span>, the size of the smallest induced cycle</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><div>This function returns the size of the smallest induced cycle of a graph. It is based upon Theorem 2.1 in the paper "Restricting linear syzygies: algebra and geometry" by Eisenbud, Green, Hulek, and Popsecu.  This theorem states that if G is graph, then the edge ideal of the complement of G satisfies property N<sub>2,p</sub>, that is, the resolution of I(G<sup>c</sup>) is linear up to the p-th step, if and only if the smallest induced cycle of G has length p+3.  The algorithm looks at the resolution of the edge ideal of the complement to determine the size of the smallest cycle.</div>
<table class="examples"><tr><td><pre>i1 : T = QQ[x_1..x_9];</pre>
</td></tr>
<tr><td><pre>i2 : g = graph {x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_6,x_6*x_7,x_7*x_8,x_8*x_9,x_9*x_1} -- a 9-cycle

o2 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}
                       1   2     2   3     3   4     4   5     5   6     6   7     7   8     1   9     8   9
           ring => T
           vertices => {x , x , x , x , x , x , x , x , x }
                         1   2   3   4   5   6   7   8   9

o2 : Graph</pre>
</td></tr>
<tr><td><pre>i3 : smallestCycleSize g

o3 = 9</pre>
</td></tr>
<tr><td><pre>i4 : h = graph {x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_6,x_6*x_7,x_7*x_8,x_8*x_9} -- a tree (no cycles)

o4 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}
                       1   2     2   3     3   4     4   5     5   6     6   7     7   8     8   9
           ring => T
           vertices => {x , x , x , x , x , x , x , x , x }
                         1   2   3   4   5   6   7   8   9

o4 : Graph</pre>
</td></tr>
<tr><td><pre>i5 : smallestCycleSize h

o5 = infinity

o5 : InfiniteNumber</pre>
</td></tr>
<tr><td><pre>i6 : l =  graph {x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_6,x_6*x_7,x_7*x_8,x_8*x_9,x_9*x_1,x_1*x_4}

o6 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}
                       1   2     2   3     1   4     3   4     4   5     5   6     6   7     7   8     1   9     8   9
           ring => T
           vertices => {x , x , x , x , x , x , x , x , x }
                         1   2   3   4   5   6   7   8   9

o6 : Graph</pre>
</td></tr>
<tr><td><pre>i7 : smallestCycleSize l

o7 = 4</pre>
</td></tr>
</table>
<div>Note that <tt>G</tt> is a tree if and only if <tt>smallestCycleSize G</tt> is <tt>infinity</tt>.</div>
</div>
</div>
<div class="waystouse"><h2>Ways to use <tt>smallestCycleSize</tt> :</h2>
<ul><li>smallestCycleSize(Graph)</li>
</ul>
</div>
</div>
</body>
</html>