Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 1932

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>Applications to multigraded polynomial rings -- finding Heft</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="___Finding_spthe_spfacets_spof_spthe_spcyclic_sppolytope.html">next</a> | <a href="index.html">previous</a> | <a href="___Finding_spthe_spfacets_spof_spthe_spcyclic_sppolytope.html">forward</a> | <a href="index.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>Applications to multigraded polynomial rings -- finding Heft</h1>
<div>A vector configuration is <em>acyclic</em> if it has a positive linear functional.  Using <tt>fourierMotzkin</tt> we can determine if a vector configuration has a positive linear functional.<p/>
Given an acyclic vector configuration (as a list of lists of <a href="../../Macaulay2Doc/html/___Z__Z.html" title="the class of all integers">ZZ</a> or <a href="../../Macaulay2Doc/html/___Q__Q.html" title="the class of all rational numbers">QQ</a>), the function <tt>findHeft</tt> finds a <a href="../../Macaulay2Doc/html/___List.html" title="the class of all lists -- {...}">List</a> representing a positive linear functional.<table class="examples"><tr><td><pre>i1 : findHeft = vectorConfig -> (
          A := transpose matrix vectorConfig;
          B := (fourierMotzkin A)#0;
          r := rank source B;
          heft := first entries (matrix{toList(r:-1)} * transpose B);
          g := gcd heft;
          if g > 1 then heft = apply(heft, h -> h //g);
          heft);</pre>
</td></tr>
</table>
<p/>
If a polynomial ring as a multigrading determined by a vector configuration, then a positive linear functional plays the role of a <a href="../../Macaulay2Doc/html/___Heft.html" title="name for an optional argument">Heft</a> vector.<p/>
For example, <tt>S</tt> is the Cox homogeneous coordinate ring for second Hirzebruch surface (under an appropriate choice of basis for the Picard group).<table class="examples"><tr><td><pre>i2 : vectorConfig = {{1,0},{-2,1},{1,0},{0,1}}

o2 = {{1, 0}, {-2, 1}, {1, 0}, {0, 1}}

o2 : List</pre>
</td></tr>
<tr><td><pre>i3 : hft = findHeft vectorConfig

o3 = {1, 3}

o3 : List</pre>
</td></tr>
<tr><td><pre>i4 : S = QQ[x_1,x_2,y_1,y_2, Heft => hft, Degrees => vectorConfig];</pre>
</td></tr>
<tr><td><pre>i5 : irrelevantIdeal = intersect(ideal(x_1,x_2), ideal(y_1,y_2))

o5 = ideal (x y , x y , x y , x y )
             2 1   1 1   2 2   1 2

o5 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i6 : res (S^1/irrelevantIdeal)

      1      4      4      1
o6 = S  &lt;-- S  &lt;-- S  &lt;-- S  &lt;-- 0
                                  
     0      1      2      3      4

o6 : ChainComplex</pre>
</td></tr>
</table>
The Betti numbers correspond to the f-vector of the polytope associated to the second Hirzebruch surface.<p/>
Similarly, <tt>R</tt> is the Cox homogeneous coordinate ring for the blowup of the projective plane at three points (under an appropriate choice of basis for the Picard group).<table class="examples"><tr><td><pre>i7 : vectorConfig = {{1,0,0,0},{0,1,0,0},{0,-1,1,0},{0,1,-1,1},
               {1,0,-1,1},{-1,0,0,1}}

o7 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, -1, 1, 0}, {0, 1, -1, 1}, {1, 0, -1,
     ------------------------------------------------------------------------
     1}, {-1, 0, 0, 1}}

o7 : List</pre>
</td></tr>
<tr><td><pre>i8 : hft = findHeft vectorConfig

o8 = {4, 4, 7, 7}

o8 : List</pre>
</td></tr>
<tr><td><pre>i9 : R = QQ[x_1..x_6, Heft => hft, Degrees => vectorConfig];</pre>
</td></tr>
<tr><td><pre>i10 : irrelevantIdeal = ideal(x_3*x_4*x_5*x_6,x_1*x_4*x_5*x_6,x_1*x_2*x_5*x_6,
           x_1*x_2*x_3*x_6,x_2*x_3*x_4*x_5,x_1*x_2*x_3*x_4)

o10 = ideal (x x x x , x x x x , x x x x , x x x x , x x x x , x x x x )
              3 4 5 6   1 4 5 6   1 2 5 6   1 2 3 6   2 3 4 5   1 2 3 4

o10 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i11 : res (R^1/irrelevantIdeal)

       1      6      6      1
o11 = R  &lt;-- R  &lt;-- R  &lt;-- R  &lt;-- 0
                                   
      0      1      2      3      4

o11 : ChainComplex</pre>
</td></tr>
</table>
Again, the Betti numbers correspond to the f-vector of the polytope associated to this toric variety.<p/>
For more information about resolutions of the irrelevant ideal of a toric variety, see subsection 4.3.6 in <a href="http://www.math.umn.edu/~ezra/">Ezra Miller</a> and <a href="http://math.berkeley.edu/~bernd/">Bernd Sturmfels'</a> <em>Combinatorial commutative algebra</em>, Graduate Texts in Mathematics 277, Springer-Verlag, New York, 2005.<p/>
For more information about vector configurations is subsections 6.2 &amp; 6.4 in <a href="http://www.math.tu-berlin.de/~ziegler/">Gunter M. Ziegler's</a> <em>Lectures on Polytopes</em>, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.</div>
</div>
</body>
</html>