Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 2049

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>conductor -- the conductor of a finite ring map</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="___Conductor__Element.html">next</a> | <a href="___All__Codimensions.html">previous</a> | <a href="___Conductor__Element.html">forward</a> | <a href="___All__Codimensions.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>conductor -- the conductor of a finite ring map</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>conductor F</tt><br/><tt>conductor R</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>F</tt>, <span>a <a href="../../Macaulay2Doc/html/___Ring__Map.html">ring map</a></span>, <i>R &rarr;S</i>, a finite map with <i>R</i> an affine reduced ring</span></li>
<li><span><tt>R</tt>, <span>a <a href="../../Macaulay2Doc/html/___Ring.html">ring</a></span>, an affine domain.  In this case, <i>F : R &rarr;S</i> is the inclusion map of <i>R</i> into the integral closure <i>S</i></span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, of <i>R</i> consisting of all <i>d &isin;R</i> such that <i>dS &sub;F(R)</i></span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><div>Suppose that the ring map <i>F : R &rarr;S</i> is finite: i.e. <i>S</i> is a finitely generated <i>R</i>-module.  The conductor of <i>F</i> is defined to be <i>{g &isin;R &nbsp;|&nbsp;g S &sub;F(R) }</i>. One way to think about this is that the conductor is the set of universal denominators of <tt>S</tt> over <tt>R</tt>, or as the largest ideal of <tt>R</tt> which is also an ideal in <tt>S</tt>. An important case is the conductor of the map from a ring to its integral closure.</div>
<table class="examples"><tr><td><pre>i1 : R = QQ[x,y,z]/ideal(x^7-z^7-y^2*z^5);</pre>
</td></tr>
<tr><td><pre>i2 : icFractions R

       3   2
      x   x
o2 = {--, --, x, y, z}
       2   z
      z

o2 : List</pre>
</td></tr>
<tr><td><pre>i3 : F = icMap R

                                                  QQ[w   , w   , x, y, z]
                                                      5,0   4,0
o3 = map(--------------------------------------------------------------------------------------------------------,R,{x, y, z})
                   2                          2     2       2     3   2            2      2   3          2    2
         (w   z - x , w   z - w   x, w   x - w   , w   x - y z - z , w   w    - x*y  - x*z , w    - w   y  - x z)
           4,0         5,0     4,0    5,0     4,0   5,0               5,0 4,0                 5,0    4,0

                                                      QQ[w   , w   , x, y, z]
                                                          5,0   4,0
o3 : RingMap -------------------------------------------------------------------------------------------------------- &lt;--- R
                       2                          2     2       2     3   2            2      2   3          2    2
             (w   z - x , w   z - w   x, w   x - w   , w   x - y z - z , w   w    - x*y  - x*z , w    - w   y  - x z)
               4,0         5,0     4,0    5,0     4,0   5,0               5,0 4,0                 5,0    4,0</pre>
</td></tr>
<tr><td><pre>i4 : conductor F

             4     3   2 2   4    5
o4 = ideal (z , x*z , x z , x z, x )

o4 : Ideal of R</pre>
</td></tr>
</table>
<div>If an affine domain (a ring finitely generated over a field) is given as input, then the conductor of <i>R</i> in its integral closure is returned.</div>
<table class="examples"><tr><td><pre>i5 : conductor R

             4     3   2 2   4    5
o5 = ideal (z , x*z , x z , x z, x )

o5 : Ideal of R</pre>
</td></tr>
</table>
<p></p>
<div>If the map is not <tt>icFractions(R)</tt>, then <a href="../../Macaulay2Doc/html/_push__Forward_lp__Ring__Map_cm__Module_rp.html" title="">pushForward</a> is called to compute the conductor.</div>
</div>
</div>
<div class="single"><h2>Caveat</h2>
<div><div>Currently this function only works if <tt>F</tt> comes from a integral closure computation, or is homogeneous</div>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_integral__Closure.html" title="integral closure of an ideal or a domain">integralClosure</a> -- integral closure of an ideal or a domain</span></li>
<li><span><a href="_ic__Fractions.html" title="fractions integral over an affine domain">icFractions</a> -- fractions integral over an affine domain</span></li>
<li><span><a href="_ic__Map.html" title="natural map from an affine domain into its integral closure">icMap</a> -- natural map from an affine domain into its integral closure</span></li>
<li><span><a href="../../Macaulay2Doc/html/_push__Forward_lp__Ring__Map_cm__Module_rp.html" title="">pushForward</a></span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>conductor</tt> :</h2>
<ul><li>conductor(Ring)</li>
<li>conductor(RingMap)</li>
</ul>
</div>
</div>
</body>
</html>