Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 2159

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>LPP -- return the lex-plus-powers (LPP) ideal corresponding to a given Hilbert function and power sequence</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_macaulay__Bound.html">next</a> | <a href="_lex__Ideal.html">previous</a> | <a href="_macaulay__Bound.html">forward</a> | <a href="_lex__Ideal.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>LPP -- return the lex-plus-powers (LPP) ideal corresponding to a given Hilbert function and power sequence</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>L=LPP(R,hilb,power)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>R</tt>, <span>a <a href="../../Macaulay2Doc/html/___Polynomial__Ring.html">polynomial ring</a></span></span></li>
<li><span><tt>hilb</tt>, <span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span>, a Hilbert function as a list</span></li>
<li><span><tt>power</tt>, <span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span>, a list of positive integers in weakly increasing order</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>L</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, an LPP ideal with the desired Hilbert function and power sequence if one exists and <tt>null</tt> otherwise</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p>Let <tt>a<sub>1</sub> &lt;= ... &lt;= a<sub>n</sub></tt> be positive integers. A monomial ideal <tt>L</tt> in a polynomial ring <tt>R=k[x<sub>1</sub>,...,x<sub>n</sub>]</tt> is called an <tt>(a<sub>1</sub>,...a<sub>n</sub>)</tt>-lex-plus-powers (LPP) ideal if it satisfies two conditions:</p>
<p>(1) L is minimally generated by <tt>x<sub>1</sub><sup>a<sub>1</sub></sup>, ..., x<sub>n</sub><sup>a<sub>n</sub></sup></tt> and monomials <tt>m<sub>1</sub>, ..., m<sub>t</sub></tt>. (2) Suppose that r is a monomial such that <tt>deg r = deg m<sub>i</sub></tt>, and <tt>r > m<sub>i</sub></tt> in the lex order. Then <tt>r</tt> is in <tt>L</tt>.</p>
<p>LPP ideals are generalizations of Artinian lexicographic ideals. Condition (2) represents the lex portion of the LPP ideal; monomials that are not powers of a variable must satisfy a lexicographic condition similar to what generators of lex ideals satisfy. An LPP ideal also contains powers of all the variables in weakly increasing order.</p>
<div>LPP ideals arise in conjectures of Eisenbud-Green-Harris and Charalambous-Evans in algebraic geometry, Hilbert functions, and graded free resolutions. They are conjectured to play a role analogous to that of lexicographic ideals in theorems of Macaulay on Hilbert functions and Bigatti, Hulett, and Pardue on resolutions.</div>
<table class="examples"><tr><td><pre>i1 : R=ZZ/32003[a..c];</pre>
</td></tr>
<tr><td><pre>i2 : LPP(R,{1,3,6,5,3},{3,3,4})

             3   3   4   2    2      2       2   2 3
o2 = ideal (a , b , c , a b, a c, a*b , a*b*c , b c )

o2 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i3 : LPP(R,{1,3,4,2,1},{2,3,5}) --an Artinian lex ideal

             2   3   5          2   2      3
o3 = ideal (a , b , c , a*b, a*c , b c, b*c )

o3 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i4 : LPP(R,{1,3,4,2,1},{2,4,3}) --exponents not in weakly increasing order</pre>
</td></tr>
<tr><td><pre>i5 : LPP(R,{1,3,4,2,1},{2,2,3}) --no LPP ideal with this Hilbert function and power sequence</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_generate__L__P__Ps.html" title="return all LPP ideals corresponding to a given Hilbert function">generateLPPs</a> -- return all LPP ideals corresponding to a given Hilbert function</span></li>
<li><span><a href="_is__L__P__P.html" title="determine whether an ideal is an LPP ideal">isLPP</a> -- determine whether an ideal is an LPP ideal</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>LPP</tt> :</h2>
<ul><li>LPP(PolynomialRing,List,List)</li>
</ul>
</div>
</div>
</body>
</html>