Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 2165

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>hilbertFunct -- return the Hilbert function of a polynomial ring mod a homogeneous ideal as a list</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_hilbert__Funct_lp..._cm_sp__Max__Degree_sp_eq_gt_sp..._rp.html">next</a> | <a href="_generate__L__P__Ps_lp..._cm_sp__Print__Ideals_sp_eq_gt_sp..._rp.html">previous</a> | <a href="_hilbert__Funct_lp..._cm_sp__Max__Degree_sp_eq_gt_sp..._rp.html">forward</a> | <a href="_generate__L__P__Ps_lp..._cm_sp__Print__Ideals_sp_eq_gt_sp..._rp.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>hilbertFunct -- return the Hilbert function of a polynomial ring mod a homogeneous ideal as a list</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>L=hilbertFunct I</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>I</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, a homogeneous ideal in a polynomial ring or a quotient of a polynomial ring (where the ring has the standard grading)</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>L</tt>, <span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span>, returns the Hilbert function of <tt>(ring I)/I</tt> as a list</span></li>
</ul>
</div>
</li>
<li><div class="single"><a href="../../Macaulay2Doc/html/_using_spfunctions_spwith_spoptional_spinputs.html">Optional inputs</a>:<ul><li><span><a href="_hilbert__Funct_lp..._cm_sp__Max__Degree_sp_eq_gt_sp..._rp.html">MaxDegree => ...</a>,  -- bound degree through which Hilbert function is computed</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p>Let <tt>I</tt> be a homogeneous ideal in a ring <tt>R</tt> that is either a polynomial ring or a quotient of a polynomial ring, and suppose that <tt>R</tt> has the standard grading. <tt>hilbertFunct</tt> returns the Hilbert function of <tt>R/I</tt> as a list.</p>
<p>If <tt>R/I</tt> is Artinian, then the default is for <tt>hilbertFunct</tt> to return the entire Hilbert function (i.e., until the Hilbert function is zero) of <tt>R/I</tt> as a list. The user can override this by using the <tt>MaxDegree</tt> option to bound the highest degree considered.</p>
<p>If <tt>R/I</tt> is not Artinian, then <tt>hilbertFunct</tt> returns the Hilbert function of <tt>R/I</tt> through degree 20. Again, the user can select a different upper bound for the degree by using the <tt>MaxDegree</tt> option.</p>
<div>We require the standard grading on <tt>R</tt> in order to compute with the Hilbert series, which is presently much faster than repeatedly computing the Hilbert function.</div>
<table class="examples"><tr><td><pre>i1 : R=ZZ/32003[a..c];</pre>
</td></tr>
<tr><td><pre>i2 : hilbertFunct ideal(a^3,b^3,c^3)

o2 = {1, 3, 6, 7, 6, 3, 1}

o2 : List</pre>
</td></tr>
<tr><td><pre>i3 : hilbertFunct ideal(a^3,a*b^2)

o3 = {1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
     ------------------------------------------------------------------------
     24, 25}

o3 : List</pre>
</td></tr>
<tr><td><pre>i4 : hilbertFunct(ideal(a^3,a*b^2),MaxDegree=>4)

o4 = {1, 3, 6, 8, 9}

o4 : List</pre>
</td></tr>
<tr><td><pre>i5 : M=ideal(a^3,b^4,a*c);

o5 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i6 : Q=R/M;</pre>
</td></tr>
<tr><td><pre>i7 : hilbertFunct ideal(c^4)

o7 = {1, 3, 5, 6, 5, 3, 1}

o7 : List</pre>
</td></tr>
<tr><td><pre>i8 : hilbertFunct ideal(b*c,a*b)

o8 = {1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

o8 : List</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_is__H__F.html" title="is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal">isHF</a> -- is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal</span></li>
<li><span><a href="_lex__Ideal.html" title="produce a lexicographic ideal">lexIdeal</a> -- produce a lexicographic ideal</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>hilbertFunct</tt> :</h2>
<ul><li>hilbertFunct(Ideal)</li>
</ul>
</div>
</div>
</body>
</html>