Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 2172

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>lexIdeal -- produce a lexicographic ideal</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="___L__P__P.html">next</a> | <a href="_is__Pure__Power.html">previous</a> | <a href="___L__P__P.html">forward</a> | <a href="_is__Pure__Power.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>lexIdeal -- produce a lexicographic ideal</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>L=lexIdeal(R,hilb) or L=lexIdeal(Q,hilb) or L=lexIdeal(I)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>R</tt>, <span>a <a href="../../Macaulay2Doc/html/___Polynomial__Ring.html">polynomial ring</a></span></span></li>
<li><span><tt>Q</tt>, <span>a <a href="../../Macaulay2Doc/html/___Quotient__Ring.html">quotient ring</a></span>, a polynomial ring modulo a homogeneous ideal</span></li>
<li><span><tt>hilb</tt>, <span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span>, a finite length list of positive integers</span></li>
<li><span><tt>I</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, a homogeneous ideal</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>L</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, the Artinian lexicographic ideal <tt>L</tt> in <tt>R</tt> (resp. <tt>Q</tt>) such that <tt>R/L</tt> (resp. <tt>Q/L</tt>) has Hilbert function <tt>hilb</tt> OR the lexicographic ideal (possibly not Artinian) <tt>L</tt> in <tt>R</tt> or <tt>Q</tt> with the same Hilbert function as <tt>I</tt></span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p>When <tt>R</tt> is a polynomial ring, if <tt>hilb</tt> is an O-sequence (that is, it satisfies Macaulay&rsquo;s Theorem), such an <tt>L</tt> always exists. When <tt>Q</tt> is a quotient of a polynomial ring, there may be no lexicographic ideal with a particular Hilbert function even if it is an O-sequence. <tt>lexIdeal</tt> returns <tt>null</tt> if no lexicographic ideal <tt>L</tt> corresponding to the Hilbert function <tt>hilb</tt> exists in <tt>R</tt> or <tt>Q</tt>.</p>
<p>When <tt>lexIdeal</tt> has an ideal as its input, it returns the lexicographic ideal with the same Hilbert function as its output. If no such ideal exists, which may happen since Macaulay&rsquo;s Theorem fails in some quotient rings, then <tt>lexIdeal</tt> returns <tt>null</tt>.</p>
<div>The function now works for quotients by arbitrary homogeneous ideals, not just monomial ideals. We thank David Eisenbud and Jeff Mermin for contributing their ideas.</div>
<table class="examples"><tr><td><pre>i1 : R=ZZ/32003[a..c];</pre>
</td></tr>
<tr><td><pre>i2 : lexIdeal(R,{1,3,4,3,1})

                  2     2   3     3   2 2   5
o2 = ideal (a*b, a , a*c , b , b*c , b c , c )

o2 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i3 : lexIdeal ideal(a*b,b*c)

                  2
o3 = ideal (a*b, a )

o3 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i4 : lexIdeal(R,{1,3,7}) --not an O-sequence, so no lex ideal exists</pre>
</td></tr>
<tr><td><pre>i5 : Q=R/ideal(a^3,b^3,a*c^2);</pre>
</td></tr>
<tr><td><pre>i6 : lexIdeal(Q,{1,3,6,4,2})

             2      2   2    2 2   5     4
o6 = ideal (a c, a*b , a b, b c , c , b*c )

o6 : Ideal of Q</pre>
</td></tr>
<tr><td><pre>i7 : lexIdeal(Q,{1,3,6,4,4}) --value of 4 in degree 4 is too high in this ring</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>Caveat</h2>
<div><div>Note that we use the Gotzmann Persistence Theorem as a stopping criterion, so one should make sure this holds in the ring in which one is computing.</div>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_macaulay__Rep.html" title="the Macaulay representation of an integer">macaulayRep</a> -- the Macaulay representation of an integer</span></li>
<li><span><a href="_macaulay__Bound.html" title="the bound on the growth of a Hilbert function from Macaulay's Theorem">macaulayBound</a> -- the bound on the growth of a Hilbert function from Macaulay's Theorem</span></li>
<li><span><a href="_is__H__F.html" title="is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal">isHF</a> -- is a finite list a Hilbert function of a polynomial ring mod a homogeneous ideal</span></li>
<li><span><a href="_is__Lex__Ideal.html" title="determine whether an ideal is a lexicographic ideal">isLexIdeal</a> -- determine whether an ideal is a lexicographic ideal</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>lexIdeal</tt> :</h2>
<ul><li>lexIdeal(Ideal)</li>
<li>lexIdeal(PolynomialRing,List)</li>
<li>lexIdeal(QuotientRing,List)</li>
</ul>
</div>
</div>
</body>
</html>