Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 2455

Macaulay2-1.3.1-8.fc15.i686.rpm

-- -*- M2-comint -*- {* hash: -1055676355 *}

i1 : R = ZZ/32003[a,b,c,d]

o1 = R

o1 : PolynomialRing

i2 : X = ideal(a^3+b^3+c^3+d^3)

            3    3    3    3
o2 = ideal(a  + b  + c  + d )

o2 : Ideal of R

i3 : KK = coefficientRing R 

o3 = KK

o3 : QuotientRing

i4 : S = KK [s,t,p_0..p_3,q_0..q_3]

o4 = S

o4 : PolynomialRing

i5 : F = map(S,R,
            s*matrix{{p_0..p_3}} +
            t*matrix{{q_0..q_3}}
            )

o5 = map(S,R,{s*p  + t*q , s*p  + t*q , s*p  + t*q , s*p  + t*q })
                 0      0     1      1     2      2     3      3

o5 : RingMap S <--- R

i6 : FX = F X

            3 3    3 3    3 3    3 3     2   2         2   2    3 3  
o6 = ideal(s p  + s p  + s p  + s p  + 3s t*p q  + 3s*t p q  + t q  +
              0      1      2      3         0 0         0 0      0  
     ------------------------------------------------------------------------
       2   2         2   2    3 3     2   2         2   2    3 3     2   2  
     3s t*p q  + 3s*t p q  + t q  + 3s t*p q  + 3s*t p q  + t q  + 3s t*p q 
           1 1         1 1      1         2 2         2 2      2         3 3
     ------------------------------------------------------------------------
           2   2    3 3
     + 3s*t p q  + t q )
             3 3      3

o6 : Ideal of S

i7 : cFX = last coefficients(gens FX, Variables => {s,t})

o7 = {3} | p_0^3+p_1^3+p_2^3+p_3^3                 |
     {3} | 3p_0^2q_0+3p_1^2q_1+3p_2^2q_2+3p_3^2q_3 |
     {3} | 3p_0q_0^2+3p_1q_1^2+3p_2q_2^2+3p_3q_3^2 |
     {3} | q_0^3+q_1^3+q_2^3+q_3^3                 |

             4       1
o7 : Matrix S  <--- S

i8 : S1 = KK[p_0..p_3,q_0..q_3]

o8 = S1

o8 : PolynomialRing

i9 : cFX = substitute(cFX, S1)

o9 = {3} | p_0^3+p_1^3+p_2^3+p_3^3                 |
     {3} | 3p_0^2q_0+3p_1^2q_1+3p_2^2q_2+3p_3^2q_3 |
     {3} | 3p_0q_0^2+3p_1q_1^2+3p_2q_2^2+3p_3q_3^2 |
     {3} | q_0^3+q_1^3+q_2^3+q_3^3                 |

              4        1
o9 : Matrix S1  <--- S1

i10 : S1bar = S1/ideal cFX

o10 = S1bar

o10 : QuotientRing

i11 : GR = coefficientRing R[x_0..x_5]

o11 = GR

o11 : PolynomialRing

i12 : M = substitute(
          exteriorPower(2, matrix{{p_0..p_3},{q_0..q_3}}),
          S1bar)

o12 = | -p_1q_0+p_0q_1 -p_2q_0+p_0q_2 -p_2q_1+p_1q_2 -p_3q_0+p_0q_3
      -----------------------------------------------------------------------
      -p_3q_1+p_1q_3 -p_3q_2+p_2q_3 |

                  1           6
o12 : Matrix S1bar  <--- S1bar

i13 : gr = map (S1bar, GR, M)

o13 = map(S1bar,GR,{- p q  + p q , - p q  + p q , - p q  + p q , - p q  + p q , - p q  + p q , - p q  + p q })
                       1 0    0 1     2 0    0 2     2 1    1 2     3 0    0 3     3 1    1 3     3 2    2 3

o13 : RingMap S1bar <--- GR

i14 : fano = trim ker gr

                                                    2      2           2    
o14 = ideal (x x  - x x  + x x , x x x , x x x , x x  + x x , x x x , x x  +
              2 3    1 4    0 5   3 4 5   1 2 5   0 4    1 5   0 2 4   0 4  
      -----------------------------------------------------------------------
       2     3    3    3     2      2     2      2   2      2             2  
      x x , x  + x  + x , x x  + x x , x x  - x x , x x  + x x , x x x , x x 
       1 5   3    4    5   1 3    2 4   0 3    2 5   1 3    2 4   0 1 3   0 3
      -----------------------------------------------------------------------
         2       2      2     2      2   2      2     2      2     3    3  
      + x x , x x  + x x , x x  + x x , x x  + x x , x x  - x x , x  + x  -
         2 5   1 2    3 4   0 2    3 5   1 2    3 4   0 2    3 5   1    2  
      -----------------------------------------------------------------------
       3     2      2   2      2     3    3    3
      x , x x  - x x , x x  - x x , x  - x  - x )
       5   0 1    4 5   0 1    4 5   0    2    4

o14 : Ideal of GR

i15 : codim fano

o15 = 5

i16 : degree fano

o16 = 27

i17 : betti fano

             0  1
o17 = total: 1 20
          0: 1  .
          1: .  1
          2: . 19

o17 : BettiTally

i18 : needsPackage "Text"

o18 = Text

o18 : Package

i19 : document {
           Key => Fano2, 
              TT "Fano2(k,X,GR) or  Fano2(k,X)", " -- computes 
              the ideal of a Fano scheme in the Grassmannian.",
              PARA{},
              "Given an ideal X representing a projective variety 
              in P^r, a positive integer k<r, and optionally a 
              ring GR with (exactly) r+1 choose k+1 variables, 
              representing the ambient space of the Grassmannian of 
              k-planes in P^r, this routine returns the ideal in
              GR of the Fano scheme that parametrizes the k-planes 
              lying on X. If the optional third argument is not 
              present, the routine fabricates its own local ring, 
              and returns an ideal over it."
              }

i20 : document {
           Key => symbol Grassmannian2, 
          TT "Grassmannian2(k,r,R) or 
              Grassmannian2(k,r)",
             "-- Given natural numbers k <= r,
              and optionally a ring R with at least binomial(r+1,k+1)
              variables, the routine defines the ideal of the 
              Grassmannian of projective k-planes in P^r, using 
              the first binomial(r+1,k+1) variables of R. 
              If R is not given, the routine makes and uses
              ZZ/31991[vars(0..binomial(r+1,k+1)-1]."
              }

i21 : Fano2 = method()

o21 = Fano2

o21 : MethodFunction

i22 : Fano2(ZZ,Ideal,Ring) := (k,X,GR) -> (
        -- Get info about the base ring of X:
        -- The coefficient ring (to make new rings of
        -- the same characteristic, for example)
        -- and the number of variables
        KK:=coefficientRing ring X;
        r := (numgens ring X) - 1;
        -- Next make private variables for our 
        -- intermediate rings, to avoid interfering
        -- with something outside:
        t:=symbol t;
        p:=symbol p;
        -- And rings
        S1 := KK[t_0..t_k];
        S2 := KK[p_0..p_(k*r+k+r)];
        S := tensor(S1,S2);
        -- Over S we have a generic point of a generic
        -- line, represented by a row vector, which
        -- we use to define a map from the base ring
        -- of X
        F := map(S,ring X,
                genericMatrix(S,S_0,1,k+1)*
                genericMatrix(S,S_(k+1),k+1,r+1)
                );
        -- We now apply F to the ideal of X
        FX := F X;
        -- and the condition we want becomes the condition
        -- that FX vanishes identically in the t_i.
        -- The following line produces the matrix of
        -- coefficients of the monomials in the 
        -- variables labelled 0..k:
        cFX := last coefficients (gens FX, Variables => toList apply(0..k, i -> S_i));
        -- We can get rid of the variables t_i
        -- to ease the computation:
        cFX = substitute(cFX, S2);
        -- The ring we want is the quotient
        S2bar := S2/ideal cFX;
        -- Now we want to move to the Grassmannian,
        -- represented by the ring GR
        -- We define a map sending the variables of GR
        -- to the minors of the generic matrix in the
        -- p_i regarded as elements of S1bar
        gr := map(S2bar,GR,
                  exteriorPower(k+1, 
                  genericMatrix(S2bar,S2bar_0,k+1,r+1)
                  )
                 );
        -- and the defining ideal of the Fano variety is
        ker gr
      )

o22 = {*Function[stdio:52:33-100:6]*}

o22 : FunctionClosure

i23 : Fano2(ZZ, Ideal) := (k,X) -> (
        KK:=coefficientRing ring X;
        r := (numgens ring X) - 1;
        -- We can specify a private ring with binomial(r+1,k+1)
        -- variables as follows
        GR := KK[Variables => binomial(r+1,k+1)];
        -- the work is done by
        Fano2(k,X,GR)
      )

o23 = {*Function[stdio:102:26-109:12]*}

o23 : FunctionClosure

i24 : Grassmannian2 = method()

o24 = Grassmannian2

o24 : MethodFunction

i25 : Grassmannian2(ZZ,ZZ,Ring) := (k,r,R) ->( 
              KK := coefficientRing R;
              RPr := KK[Variables => r+1];
              Pr := ideal(0_RPr);
              Fano2(k,Pr)
           )

o25 = {*Function[stdio:112:37-116:16]*}

o25 : FunctionClosure

i26 : Grassmannian2(ZZ,ZZ) := (r,k) -> (
              R := ZZ/31991[
                     vars(0..(binomial(r+1,k+1)-1))
                          ];
              Grassmannian2(k,r,R)
                           )

o26 = {*Function[stdio:118:30-122:26]*}

o26 : FunctionClosure

i27 : KK = ZZ/31991

o27 = KK

o27 : QuotientRing

i28 : R = KK[a,b,c,d]

o28 = R

o28 : PolynomialRing

i29 : X = ideal(a*b-c*d)

o29 = ideal(a*b - c*d)

o29 : Ideal of R

i30 : I = Fano2(1,X)

                                                  2                     
o30 = ideal (p p , p p , p p  + 15995p p  - 15995p , p p  + p p , p p  -
              3 4   2 4   1 4         0 5         5   0 4    4 5   2 3  
      -----------------------------------------------------------------------
                        2                                                    
      15995p p  - 15995p , p p , p p  - p p , p p , p p  - p p , p p  + p p ,
            0 5         5   1 3   0 3    3 5   1 2   0 2    2 5   0 1    1 5 
      -----------------------------------------------------------------------
       2    2
      p  - p )
       0    5

o30 : Ideal of KK[p , p , p , p , p , p ]
                   0   1   2   3   4   5

i31 : dim I

o31 = 2

i32 : degree I

o32 = 4

i33 : KK = ZZ/31991

o33 = KK

o33 : QuotientRing

i34 : P5 = KK[a..f]

o34 = P5

o34 : PolynomialRing

i35 : MVero = genericSymmetricMatrix(P5,a,3)

o35 = | a b c |
      | b d e |
      | c e f |

               3        3
o35 : Matrix P5  <--- P5

i36 : Vero = minors(2,MVero)

                2                                                  2         
o36 = ideal (- b  + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c  + a*f, -
      -----------------------------------------------------------------------
                                              2
      c*e + b*f, - c*d + b*e, - c*e + b*f, - e  + d*f)

o36 : Ideal of P5

i37 : catalecticant = (R,v,m,n) -> 
              map(R^m,n,(i,j)-> R_(i+j+v))

o37 = catalecticant

o37 : FunctionClosure

i38 : catalecticant(P5,1,2,4)

o38 = | b c d e |
      | c d e f |

               2        4
o38 : Matrix P5  <--- P5

i39 : M13 = catalecticant(P5,0,2,1) |
                 catalecticant(P5,2,2,3)

o39 = | a c d e |
      | b d e f |

               2        4
o39 : Matrix P5  <--- P5

i40 : S13 = minors(2,M13)

                                          2                                 
o40 = ideal (- b*c + a*d, - b*d + a*e, - d  + c*e, - b*e + a*f, - d*e + c*f,
      -----------------------------------------------------------------------
         2
      - e  + d*f)

o40 : Ideal of P5

i41 : M22 = catalecticant(P5,0,2,2) | catalecticant(P5,3,2,2)

o41 = | a b d e |
      | b c e f |

               2        4
o41 : Matrix P5  <--- P5

i42 : S22 = minors(2, M22)

                2                                                           
o42 = ideal (- b  + a*c, - b*d + a*e, - c*d + b*e, - b*e + a*f, - c*e + b*f,
      -----------------------------------------------------------------------
         2
      - e  + d*f)

o42 : Ideal of P5

i43 : Verores = res coker gens Vero

        1       6       8       3
o43 = P5  <-- P5  <-- P5  <-- P5  <-- 0
                                       
      0       1       2       3       4

o43 : ChainComplex

i44 : S22res = res coker gens S22

        1       6       8       3
o44 = P5  <-- P5  <-- P5  <-- P5  <-- 0
                                       
      0       1       2       3       4

o44 : ChainComplex

i45 : S13res = res coker gens S13

        1       6       8       3
o45 = P5  <-- P5  <-- P5  <-- P5  <-- 0
                                       
      0       1       2       3       4

o45 : ChainComplex

i46 : betti Verores

             0 1 2 3
o46 = total: 1 6 8 3
          0: 1 . . .
          1: . 6 8 3

o46 : BettiTally

i47 : betti S22res

             0 1 2 3
o47 = total: 1 6 8 3
          0: 1 . . .
          1: . 6 8 3

o47 : BettiTally

i48 : betti S13res

             0 1 2 3
o48 = total: 1 6 8 3
          0: 1 . . .
          1: . 6 8 3

o48 : BettiTally

i49 : FVero = Fano2(1, Vero)

              2                                                              
o49 = ideal (p  , p  p  , p  p  , p  p  , p  p  , p p  , p p  , p p  , p p  ,
              14   13 14   12 14   11 14   10 14   9 14   8 14   7 14   6 14 
      -----------------------------------------------------------------------
                                                 2                          
      p p  , p p  , p p  , p p  , p p  , p p  , p  , p  p  , p  p  , p  p  ,
       5 14   4 14   3 14   2 14   1 14   0 14   13   12 13   11 13   10 13 
      -----------------------------------------------------------------------
                                                                           
      p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  ,
       9 13   8 13   7 13   6 13   5 13   4 13   3 13   2 13   1 13   0 13 
      -----------------------------------------------------------------------
       2                                                                   
      p  , p  p  , p  p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  ,
       12   11 12   10 12   9 12   8 12   7 12   6 12   5 12   4 12   3 12 
      -----------------------------------------------------------------------
                            2                                             
      p p  , p p  , p p  , p  , p  p  , p p  , p p  , p p  , p p  , p p  ,
       2 12   1 12   0 12   11   10 11   9 11   8 11   7 11   6 11   5 11 
      -----------------------------------------------------------------------
                                          2                              
      p p  , p p  , p p  , p p  , p p  , p  , p p  , p p  , p p  , p p  ,
       4 11   3 11   2 11   1 11   0 11   10   9 10   8 10   7 10   6 10 
      -----------------------------------------------------------------------
                                                 2                         
      p p  , p p  , p p  , p p  , p p  , p p  , p , p p , p p , p p , p p ,
       5 10   4 10   3 10   2 10   1 10   0 10   9   8 9   7 9   6 9   5 9 
      -----------------------------------------------------------------------
                                     2                                     
      p p , p p , p p , p p , p p , p , p p , p p , p p , p p , p p , p p ,
       4 9   3 9   2 9   1 9   0 9   8   7 8   6 8   5 8   4 8   3 8   2 8 
      -----------------------------------------------------------------------
                   2                                             2       
      p p , p p , p , p p , p p , p p , p p , p p , p p , p p , p , p p ,
       1 8   0 8   7   6 7   5 7   4 7   3 7   2 7   1 7   0 7   6   5 6 
      -----------------------------------------------------------------------
                                     2                                 2 
      p p , p p , p p , p p , p p , p , p p , p p , p p , p p , p p , p ,
       4 6   3 6   2 6   1 6   0 6   5   4 5   3 5   2 5   1 5   0 5   4 
      -----------------------------------------------------------------------
                               2                     2               2       
      p p , p p , p p , p p , p , p p , p p , p p , p , p p , p p , p , p p ,
       3 4   2 4   1 4   0 4   3   2 3   1 3   0 3   2   1 2   0 2   1   0 1 
      -----------------------------------------------------------------------
       2
      p )
       0

o49 : Ideal of KK[p , p , p , p , p , p , p , p , p , p , p  , p  , p  , p  , p  ]
                   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14

i50 : betti gens FVero

             0   1
o50 = total: 1 120
          0: 1   .
          1: . 120

o50 : BettiTally

i51 : FS13 = Fano2(1, S13)

              2                                                              
o51 = ideal (p  , p  p  , p  p  , p  p  , p  p  , p p  , p p  , p p  , p p  ,
              14   13 14   12 14   11 14   10 14   9 14   8 14   7 14   6 14 
      -----------------------------------------------------------------------
                                                 2                          
      p p  , p p  , p p  , p p  , p p  , p p  , p  , p  p  , p  p  , p  p  ,
       5 14   4 14   3 14   2 14   1 14   0 14   13   12 13   11 13   10 13 
      -----------------------------------------------------------------------
                                                                           
      p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  ,
       9 13   8 13   7 13   6 13   5 13   4 13   3 13   2 13   1 13   0 13 
      -----------------------------------------------------------------------
       2                                                                   
      p  , p  p  , p  p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  ,
       12   11 12   10 12   9 12   8 12   7 12   6 12   5 12   4 12   3 12 
      -----------------------------------------------------------------------
                                                                       
      p p  , p p  , p p  , p p  , p p  , p p   - p  p  , p p  , p p   -
       2 12   1 12   0 12   9 11   8 11   7 11    10 11   5 11   4 11  
      -----------------------------------------------------------------------
                                    2                                       
      p p  , p p   - p p  , p p  , p   - p p  , p p  , p p  , p p   - p p  ,
       6 11   2 11    3 11   0 11   10    6 11   9 10   8 10   7 10    6 11 
      -----------------------------------------------------------------------
                                                                        
      p p   - p p  , p p  , p p   - p p  , p p   - p p  , p p   - p p  ,
       6 10    3 11   5 10   4 10    3 11   3 10    1 11   2 10    1 11 
      -----------------------------------------------------------------------
              2                                                         2 
      p p  , p , p p , p p , p p , p p , p p , p p , p p , p p , p p , p ,
       0 10   9   8 9   7 9   6 9   5 9   4 9   3 9   2 9   1 9   0 9   8 
      -----------------------------------------------------------------------
                                                       2                
      p p , p p , p p , p p , p p , p p , p p , p p , p  - p p  , p p  -
       7 8   6 8   5 8   4 8   3 8   2 8   1 8   0 8   7    6 11   6 7  
      -----------------------------------------------------------------------
                                                                          
      p p  , p p , p p  - p p  , p p  - p p  , p p  - p p  , p p  - p p  ,
       3 11   5 7   4 7    3 11   3 7    1 11   2 7    1 11   1 7    1 10 
      -----------------------------------------------------------------------
             2                                                               
      p p , p  - p p  , p p , p p  - p p  , p p  - p p  , p p  - p p  , p p ,
       0 7   6    1 11   5 6   4 6    1 11   3 6    1 10   2 6    1 10   0 6 
      -----------------------------------------------------------------------
       2                                 2                              
      p , p p , p p , p p , p p , p p , p  - p p  , p p  - p p  , p p  -
       5   4 5   3 5   2 5   1 5   0 5   4    1 11   3 4    1 10   2 4  
      -----------------------------------------------------------------------
                                 2                             2
      p p  , p p  - p p , p p , p  - p p , p p  - p p , p p , p  - p p , p p 
       1 10   1 4    1 6   0 4   3    1 6   2 3    1 6   0 3   2    1 6   1 2
      -----------------------------------------------------------------------
      - p p , p p , p p )
         1 3   0 2   0 1

o51 : Ideal of KK[p , p , p , p , p , p , p , p , p , p , p  , p  , p  , p  , p  ]
                   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14

i52 : hilbertPolynomial coker gens FS13

o52 = - 2*P  + 4*P
           0      1

o52 : ProjectiveHilbertPolynomial

i53 : FS22 = Fano2(1, S22)

              2                                                              
o53 = ideal (p  , p  p  , p  p  , p  p  , p  p  , p p  , p p  , p p  , p p  ,
              14   13 14   12 14   11 14   10 14   9 14   8 14   7 14   6 14 
      -----------------------------------------------------------------------
                                                 2                          
      p p  , p p  , p p  , p p  , p p  , p p  , p  , p  p  , p  p  , p  p  ,
       5 14   4 14   3 14   2 14   1 14   0 14   13   12 13   11 13   10 13 
      -----------------------------------------------------------------------
                                                                           
      p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  , p p  ,
       9 13   8 13   7 13   6 13   5 13   4 13   3 13   2 13   1 13   0 13 
      -----------------------------------------------------------------------
                                                                           
      p p  , p p   - p  p  , p p   - p  p  , p p   - p  p  , p p   - p p  ,
       9 12   8 12    11 12   7 12    10 12   5 12    10 12   4 12    6 12 
      -----------------------------------------------------------------------
                            2                                          
      p p  , p p  , p p  , p   - p  p  , p  p   - p p  , p p  , p p   -
       2 12   1 12   0 12   11    10 12   10 11    6 12   9 11   8 11  
      -----------------------------------------------------------------------
                                                                         
      p  p  , p p   - p p  , p p   - p p  , p p   - p p  , p p   - p p  ,
       10 12   7 11    6 12   6 11    3 12   5 11    6 12   4 11    3 12 
      -----------------------------------------------------------------------
                            2                                               
      p p  , p p  , p p  , p   - p p  , p p  , p p   - p p  , p p   - p p  ,
       2 11   1 11   0 11   10    3 12   9 10   8 10    6 12   7 10    3 12 
      -----------------------------------------------------------------------
                                                                         2 
      p p   - p p  , p p   - p p  , p p   - p p  , p p  , p p  , p p  , p ,
       6 10    3 11   5 10    3 12   4 10    3 11   2 10   1 10   0 10   9 
      -----------------------------------------------------------------------
                                                             2               
      p p , p p , p p , p p , p p , p p , p p , p p , p p , p  - p  p  , p p 
       8 9   7 9   6 9   5 9   4 9   3 9   2 9   1 9   0 9   8    10 12   7 8
      -----------------------------------------------------------------------
                                                                            
      - p p  , p p  - p p  , p p  - p p  , p p  - p p  , p p  - p p  , p p ,
         6 12   6 8    3 12   5 8    6 12   4 8    3 12   3 8    3 11   2 8 
      -----------------------------------------------------------------------
                   2                                                        
      p p , p p , p  - p p  , p p  - p p  , p p  - p p  , p p  - p p  , p p 
       1 8   0 8   7    3 12   6 7    3 11   5 7    3 12   4 7    3 11   3 7
      -----------------------------------------------------------------------
                                  2                                     
      - p p  , p p , p p , p p , p  - p p  , p p  - p p  , p p  - p p  ,
         3 10   2 7   1 7   0 7   6    3 10   5 6    3 11   4 6    3 10 
      -----------------------------------------------------------------------
                         2                                                 
      p p , p p , p p , p  - p p  , p p  - p p  , p p  - p p  , p p , p p ,
       2 6   1 6   0 6   5    3 12   4 5    3 11   3 5    3 10   2 5   1 5 
      -----------------------------------------------------------------------
             2                                                            2 
      p p , p  - p p  , p p  - p p , p p , p p , p p , p p , p p , p p , p ,
       0 5   4    3 10   3 4    3 6   2 4   1 4   0 4   2 3   1 3   0 3   2 
      -----------------------------------------------------------------------
                   2         2
      p p , p p , p , p p , p )
       1 2   0 2   1   0 1   0

o53 : Ideal of KK[p , p , p , p , p , p , p , p , p , p , p  , p  , p  , p  , p  ]
                   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14

i54 : hilbertPolynomial coker gens FS22

o54 = - 3*P  + 4*P
           0      1

o54 : ProjectiveHilbertPolynomial

i55 :