Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 2487

Macaulay2-1.3.1-8.fc15.i686.rpm

-- -*- M2-comint -*- {* hash: 2045688505 *}

i1 : 2+2

o1 = 4

i2 : 3/5 + 7/11

     68
o2 = --
     55

o2 : QQ

i3 : 1*2*3*4

o3 = 24

i4 : 2^200

o4 = 1606938044258990275541962092341162602522202993782792835301376

i5 : 40!

o5 = 815915283247897734345611269596115894272000000000

i6 : 100!

o6 = 933262154439441526816992388562667004907159682643816214685929638952175999
     932299156089414639761565182862536979208272237582511852109168640000000000
     00000000000000

i7 : 1;2;3*4

o9 = 12

i10 : 4*5;

i11 : oo

o11 = 20

i12 : o5 + 1

o12 = 815915283247897734345611269596115894272000000001

i13 : "hi there"

o13 = hi there

i14 : s = "hi there"

o14 = hi there

i15 : s | " - " | s

o15 = hi there - hi there

i16 : s || " - " || s

o16 = hi there
       - 
      hi there

i17 : {1, 2, s}

o17 = {1, 2, hi there}

o17 : List

i18 : 10*{1,2,3} + {1,1,1}

o18 = {11, 21, 31}

o18 : List

i19 : f = i -> i^3

o19 = f

o19 : FunctionClosure

i20 : f 5

o20 = 125

i21 : g = (x,y) -> x * y

o21 = g

o21 : FunctionClosure

i22 : g(6,9)

o22 = 54

i23 : apply({1,2,3,4}, i -> i^2)

o23 = {1, 4, 9, 16}

o23 : List

i24 : apply({1,2,3,4}, f)

o24 = {1, 8, 27, 64}

o24 : List

i25 : apply(1 .. 4, f)

o25 = (1, 8, 27, 64)

o25 : Sequence

i26 : apply(5, f)

o26 = {0, 1, 8, 27, 64}

o26 : List

i27 : scan(5, i -> print (i, i^3))
(0, 0)
(1, 1)
(2, 8)
(3, 27)
(4, 64)

i28 : j=1; scan(10, i -> j = 2*j); j

o30 = 1024

i31 : R = ZZ/5[x,y,z];

i32 : (x+y)^5

       5    5
o32 = x  + y

o32 : R

i33 : R

o33 = R

o33 : PolynomialRing

i34 : describe R

      ZZ
o34 = --[x..z, Degrees => {3:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1]
       5                                                       {GRevLex => {3:1}  }
                                                               {Position => Up    }

i35 : F = R^3

       3
o35 = R

o35 : R-module, free

i36 : F_1

o36 = | 0 |
      | 1 |
      | 0 |

       3
o36 : R

i37 : F_{1,2}

o37 = | 0 0 |
      | 1 0 |
      | 0 1 |

              3       2
o37 : Matrix R  <--- R

i38 : F_{2,1,1}

o38 = | 0 0 0 |
      | 0 1 1 |
      | 1 0 0 |

              3       3
o38 : Matrix R  <--- R

i39 : f = matrix {{x,y,z}}
--warning: function f redefined

o39 = | x y z |

              1       3
o39 : Matrix R  <--- R

i40 : image f

o40 = image | x y z |

                              1
o40 : R-module, submodule of R

i41 : ideal (x,y,z)

o41 = ideal (x, y, z)

o41 : Ideal of R

i42 : kernel f

o42 = image {1} | -y 0  -z |
            {1} | x  -z 0  |
            {1} | 0  y  x  |

                              3
o42 : R-module, submodule of R

i43 : generators oo

o43 = {1} | -y 0  -z |
      {1} | x  -z 0  |
      {1} | 0  y  x  |

              3       3
o43 : Matrix R  <--- R

i44 : poincare kernel f

        2    3
o44 = 3T  - T

o44 : ZZ[T]

i45 : rank kernel f

o45 = 2

i46 : presentation kernel f

o46 = {2} | z  |
      {2} | x  |
      {2} | -y |

              3       1
o46 : Matrix R  <--- R

i47 : cokernel f

o47 = cokernel | x y z |

                             1
o47 : R-module, quotient of R

i48 : N = kernel f ++ cokernel f

o48 = subquotient ({1} | -y 0  -z 0 |, {1} | 0 0 0 |)
                   {1} | x  -z 0  0 |  {1} | 0 0 0 |
                   {1} | 0  y  x  0 |  {1} | 0 0 0 |
                   {0} | 0  0  0  1 |  {0} | x y z |

                                4
o48 : R-module, subquotient of R

i49 : generators N

o49 = {1} | -y 0  -z 0 |
      {1} | x  -z 0  0 |
      {1} | 0  y  x  0 |
      {0} | 0  0  0  1 |

              4       4
o49 : Matrix R  <--- R

i50 : relations N

o50 = {1} | 0 0 0 |
      {1} | 0 0 0 |
      {1} | 0 0 0 |
      {0} | x y z |

              4       3
o50 : Matrix R  <--- R

i51 : prune N

o51 = cokernel {2} | 0 0 0 z  |
               {2} | 0 0 0 x  |
               {2} | 0 0 0 -y |
               {0} | z y x 0  |

                             4
o51 : R-module, quotient of R

i52 : C = resolution cokernel f

       1      3      3      1
o52 = R  <-- R  <-- R  <-- R  <-- 0
                                   
      0      1      2      3      4

o52 : ChainComplex

i53 : C.dd

           1                 3
o53 = 0 : R  <------------- R  : 1
                | x y z |

           3                        3
      1 : R  <-------------------- R  : 2
                {1} | -y -z 0  |
                {1} | x  0  -z |
                {1} | 0  x  y  |

           3                  1
      2 : R  <-------------- R  : 3
                {2} | z  |
                {2} | -y |
                {2} | x  |

           1
      3 : R  <----- 0 : 4
                0

o53 : ChainComplexMap

i54 : C.dd^2 == 0

o54 = true

i55 : betti C

             0 1 2 3
o55 = total: 1 3 3 1
          0: 1 3 3 1

o55 : BettiTally

i56 : R = ZZ/101[a .. r];

i57 : g = genericMatrix(R,a,3,6)

o57 = | a d g j m p |
      | b e h k n q |
      | c f i l o r |

              3       6
o57 : Matrix R  <--- R

i58 : M = cokernel g

o58 = cokernel | a d g j m p |
               | b e h k n q |
               | c f i l o r |

                             3
o58 : R-module, quotient of R

i59 : time C = resolution M
     -- used 0.001 seconds

       3      6      15      18      6
o59 = R  <-- R  <-- R   <-- R   <-- R  <-- 0
                                            
      0      1      2       3       4      5

o59 : ChainComplex

i60 : betti C

             0 1  2  3 4
o60 = total: 3 6 15 18 6
          0: 3 6  .  . .
          1: . .  .  . .
          2: . . 15 18 6

o60 : BettiTally

i61 : S = ZZ/101[t_1 .. t_9, u_1 .. u_9];

i62 : m = genericMatrix(S, t_1, 3, 3)

o62 = | t_1 t_4 t_7 |
      | t_2 t_5 t_8 |
      | t_3 t_6 t_9 |

              3       3
o62 : Matrix S  <--- S

i63 : n = genericMatrix(S, u_1, 3, 3)

o63 = | u_1 u_4 u_7 |
      | u_2 u_5 u_8 |
      | u_3 u_6 u_9 |

              3       3
o63 : Matrix S  <--- S

i64 : m*n

o64 = | t_1u_1+t_4u_2+t_7u_3 t_1u_4+t_4u_5+t_7u_6 t_1u_7+t_4u_8+t_7u_9 |
      | t_2u_1+t_5u_2+t_8u_3 t_2u_4+t_5u_5+t_8u_6 t_2u_7+t_5u_8+t_8u_9 |
      | t_3u_1+t_6u_2+t_9u_3 t_3u_4+t_6u_5+t_9u_6 t_3u_7+t_6u_8+t_9u_9 |

              3       3
o64 : Matrix S  <--- S

i65 : j = flatten(m*n - n*m)

o65 = | t_4u_2+t_7u_3-t_2u_4-t_3u_7 t_2u_1-t_1u_2+t_5u_2+t_8u_3-t_2u_5-t_3u_8
      -----------------------------------------------------------------------
      t_3u_1+t_6u_2-t_1u_3+t_9u_3-t_2u_6-t_3u_9
      -----------------------------------------------------------------------
      -t_4u_1+t_1u_4-t_5u_4+t_4u_5+t_7u_6-t_6u_7 -t_4u_2+t_2u_4+t_8u_6-t_6u_8
      -----------------------------------------------------------------------
      -t_4u_3+t_3u_4+t_6u_5-t_5u_6+t_9u_6-t_6u_9
      -----------------------------------------------------------------------
      -t_7u_1-t_8u_4+t_1u_7-t_9u_7+t_4u_8+t_7u_9
      -----------------------------------------------------------------------
      -t_7u_2-t_8u_5+t_2u_7+t_5u_8-t_9u_8+t_8u_9 -t_7u_3-t_8u_6+t_3u_7+t_6u_8
      -----------------------------------------------------------------------
      |

              1       9
o65 : Matrix S  <--- S

i66 : gb j

o66 = GroebnerBasis[status: done; S-pairs encountered up to degree 5]

o66 : GroebnerBasis

i67 : generators gb j;

              1       26
o67 : Matrix S  <--- S

i68 : betti gb j

             0  1
o68 = total: 1 26
          0: 1  .
          1: .  8
          2: . 12
          3: .  5
          4: .  1

o68 : BettiTally

i69 :