Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 3790

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>Singular Book 1.6.13 -- normal form</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="___Singular_sp__Book_sp1.7.10.html">next</a> | <a href="___Singular_sp__Book_sp1.5.10.html">previous</a> | <a href="___Singular_sp__Book_sp1.7.10.html">forward</a> | <a href="___Singular_sp__Book_sp1.5.10.html">backward</a> | <a href="___M2__Singular__Book.html">up</a> | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<div><a href="index.html" title="">Macaulay2Doc</a> > <a href="_basic_spcommutative_spalgebra.html" title="">basic commutative algebra</a> > <a href="___M2__Singular__Book.html" title="Macaulay2 examples for the Singular book">M2SingularBook</a> > <a href="___Singular_sp__Book_sp1.6.13.html" title="normal form">Singular Book 1.6.13</a></div>
<hr/>
<div><h1>Singular Book 1.6.13 -- normal form</h1>
<div>Normal forms in Macaulay2 are done using the remainder operator <a href="__pc.html" title="a binary operator, usually used for remainder and reduction">%</a>.<table class="examples"><tr><td><pre>i1 : R = QQ[x,y,z];</pre>
</td></tr>
<tr><td><pre>i2 : f = x^2*y*z+x*y^2*z+y^2*z+z^3+x*y;</pre>
</td></tr>
<tr><td><pre>i3 : f1 = x*y+y^2-1

            2
o3 = x*y + y  - 1

o3 : R</pre>
</td></tr>
<tr><td><pre>i4 : f2 = x*y

o4 = x*y

o4 : R</pre>
</td></tr>
<tr><td><pre>i5 : G = ideal(f1,f2)

                   2
o5 = ideal (x*y + y  - 1, x*y)

o5 : Ideal of R</pre>
</td></tr>
</table>
Macaulay2 computes a Groebner basis of G, and uses that to find the normal form of f.  In Macaulay2, all remainders are reduced normal forms (at least for non-local orders).<table class="examples"><tr><td><pre>i6 : f % G

      3
o6 = z  + z

o6 : R</pre>
</td></tr>
</table>
<p/>
In order to reduce using a non Groebner basis, use <a href="_force__G__B.html" title="declare that the columns of a matrix are a Gröbner basis">forceGB</a><table class="examples"><tr><td><pre>i7 : f % (forceGB gens G)

      2     3    2
o7 = y z + z  - y  + x*z + 1

o7 : R</pre>
</td></tr>
</table>
This is a different answer from the SINGULAR book, since the choice of divisor affects the answer.<table class="examples"><tr><td><pre>i8 : f % (forceGB matrix{{f2,f1}})

      2     3
o8 = y z + z

o8 : R</pre>
</td></tr>
</table>
</div>
</div>
</body>
</html>