Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 3791

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>Singular Book 1.7.10 -- standard bases</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="___Singular_sp__Book_sp1.7.12.html">next</a> | <a href="___Singular_sp__Book_sp1.6.13.html">previous</a> | <a href="___Singular_sp__Book_sp1.7.12.html">forward</a> | <a href="___Singular_sp__Book_sp1.6.13.html">backward</a> | <a href="___M2__Singular__Book.html">up</a> | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<div><a href="index.html" title="">Macaulay2Doc</a> > <a href="_basic_spcommutative_spalgebra.html" title="">basic commutative algebra</a> > <a href="___M2__Singular__Book.html" title="Macaulay2 examples for the Singular book">M2SingularBook</a> > <a href="___Singular_sp__Book_sp1.7.10.html" title="standard bases">Singular Book 1.7.10</a></div>
<hr/>
<div><h1>Singular Book 1.7.10 -- standard bases</h1>
<div>We show the Groebner and standard bases of an ideal under several different orders and localizations.  First, the default order is graded (degree) reverse lexicographic.<table class="examples"><tr><td><pre>i1 : A = QQ[x,y];</pre>
</td></tr>
<tr><td><pre>i2 : I = ideal "x10+x9y2,y8-x2y7";

o2 : Ideal of A</pre>
</td></tr>
<tr><td><pre>i3 : transpose gens gb I

o3 = {-9}  | x2y7-y8   |
     {-11} | x9y2+x10  |
     {-13} | x12y+xy11 |
     {-13} | x13-xy12  |
     {-14} | y14+xy12  |
     {-14} | xy13+y12  |

             6       1
o3 : Matrix A  &lt;--- A</pre>
</td></tr>
</table>
<p/>
Lexicographic order:<table class="examples"><tr><td><pre>i4 : A1 = QQ[x,y,MonomialOrder=>Lex];</pre>
</td></tr>
<tr><td><pre>i5 : I = substitute(I,A1)

             10    9 2     2 7    8
o5 = ideal (x   + x y , - x y  + y )

o5 : Ideal of A1</pre>
</td></tr>
<tr><td><pre>i6 : transpose gens gb I

o6 = {-15} | y15-y12  |
     {-14} | xy12+y14 |
     {-9}  | x2y7-y8  |
     {-11} | x10+x9y2 |

              4        1
o6 : Matrix A1  &lt;--- A1</pre>
</td></tr>
</table>
<p/>
Now we change to a local order<table class="examples"><tr><td><pre>i7 : B = QQ[x,y,MonomialOrder=>{Weights=>{-1,-1},2},Global=>false];</pre>
</td></tr>
<tr><td><pre>i8 : I = substitute(I,B)

             10    9 2   8    2 7
o8 = ideal (x   + x y , y  - x y )

o8 : Ideal of B</pre>
</td></tr>
<tr><td><pre>i9 : transpose gens gb I

o9 = {-11} | x10+x9y2 |
     {-9}  | y8-x2y7  |

             2       1
o9 : Matrix B  &lt;--- B</pre>
</td></tr>
</table>
<p/>
Another local order: negative lexicographic.<table class="examples"><tr><td><pre>i10 : B = QQ[x,y,MonomialOrder=>{Weights=>{-1,0},Weights=>{0,-1}},Global=>false];</pre>
</td></tr>
<tr><td><pre>i11 : I = substitute(I,B)

              9 2    10   8    2 7
o11 = ideal (x y  + x  , y  - x y )

o11 : Ideal of B</pre>
</td></tr>
<tr><td><pre>i12 : transpose gens gb I

o12 = {-16} | x13-x13y3 |
      {-11} | x9y2+x10  |
      {-9}  | y8-x2y7   |

              3       1
o12 : Matrix B  &lt;--- B</pre>
</td></tr>
</table>
<p/>
One method to compute a standard basis is via homogenization.  The example below does this, obtaining a standard basis which is not minimal.<table class="examples"><tr><td><pre>i13 : M = matrix{{1,1,1},{0,-1,-1},{0,0,-1}}

o13 = | 1 1  1  |
      | 0 -1 -1 |
      | 0 0  -1 |

               3        3
o13 : Matrix ZZ  &lt;--- ZZ</pre>
</td></tr>
<tr><td><pre>i14 : mo = apply(entries M, e -> Weights => e)

o14 = {Weights => {1, 1, 1}, Weights => {0, -1, -1}, Weights => {0, 0, -1}}

o14 : List</pre>
</td></tr>
<tr><td><pre>i15 : C = QQ[t,x,y,MonomialOrder=>mo];</pre>
</td></tr>
<tr><td><pre>i16 : I = homogenize(substitute(I,C),t)

                10    9 2     8    2 7
o16 = ideal (t*x   + x y , t*y  - x y )

o16 : Ideal of C</pre>
</td></tr>
<tr><td><pre>i17 : transpose gens gb I

o17 = {-9}  | ty8-x2y7    |
      {-11} | tx10+x9y2   |
      {-19} | x12y7+x9y10 |

              3       1
o17 : Matrix C  &lt;--- C</pre>
</td></tr>
<tr><td><pre>i18 : substitute(transpose gens gb I, {t=>1})

o18 = {-9}  | -x2y7+y8    |
      {-11} | x9y2+x10    |
      {-19} | x12y7+x9y10 |

              3       1
o18 : Matrix C  &lt;--- C</pre>
</td></tr>
</table>
The first two elements form a standard basis.</div>
</div>
</body>
</html>