Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 3971

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>* -- a binary operator, usually used for multiplication</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="__sl.html">next</a> | <a href="_-.html">previous</a> | <a href="__sl.html">forward</a> | <a href="_-.html">backward</a> | <a href="_operators.html">up</a> | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<div><a href="index.html" title="">Macaulay2Doc</a> > <a href="___The_sp__Macaulay2_splanguage.html" title="">The Macaulay2 language</a> > <a href="_operators.html" title="">operators</a> > <a href="__st.html" title="a binary operator, usually used for multiplication">*</a></div>
<hr/>
<div><h1>* -- a binary operator, usually used for multiplication</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>x * y</tt></div>
</dd></dl>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div>The return type depends on the types of x and y.  If they have the same type, then usually the return type is the common type of x and y.<p/>
Multiplication involving ring elements (including integers, rational numbers, real and complex numbers), ideals, vectors, matrices, modules is generally the usual multiplication, or composition of functions.<p/>
The intersection of sets is given by multiplication.  See <a href="___Set_sp_st_sp__Set.html" title="intersection of sets">Set * Set</a>.<table class="examples"><tr><td><pre>i1 : set{hi,you,there} * set{hi,us,here,you}

o1 = set {hi, you}

o1 : Set</pre>
</td></tr>
</table>
<p/>
Multiplication involving a list attempts to multiply each element of the list.<table class="examples"><tr><td><pre>i2 : R = QQ[a..d];</pre>
</td></tr>
<tr><td><pre>i3 : a * {b,c,d}

o3 = {a*b, a*c, a*d}

o3 : List</pre>
</td></tr>
</table>
<p/>
Multiplication of matrices (<a href="___Matrix_sp_st_sp__Matrix.html" title="matrix multiplication">Matrix * Matrix</a>) or ring maps is the same as composition.<table class="examples"><tr><td><pre>i4 : f = map(R,R,{b,c,a,d})

o4 = map(R,R,{b, c, a, d})

o4 : RingMap R &lt;--- R</pre>
</td></tr>
<tr><td><pre>i5 : g = map(R,R,{(a+b)^2,b^2,c^2,d^2})

               2           2   2   2   2
o5 = map(R,R,{a  + 2a*b + b , b , c , d })

o5 : RingMap R &lt;--- R</pre>
</td></tr>
<tr><td><pre>i6 : f*g

               2           2   2   2   2
o6 = map(R,R,{b  + 2b*c + c , c , a , d })

o6 : RingMap R &lt;--- R</pre>
</td></tr>
<tr><td><pre>i7 : (f*g)(a) == f(g(a))

o7 = true</pre>
</td></tr>
</table>
<p/>
Submodules of modules may be produced using multiplication and addition.<table class="examples"><tr><td><pre>i8 : M = R^2; I = ideal(a+b,c);

o9 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i10 : N = I*M + a*R^2

o10 = image | a+b 0   c 0 a 0 |
            | 0   a+b 0 c 0 a |

                              2
o10 : R-module, submodule of R</pre>
</td></tr>
<tr><td><pre>i11 : isHomogeneous N

o11 = true</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_times.html" title="multiplication">times</a> -- multiplication</span></li>
<li><span><a href="_product.html" title="">product</a></span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>*</tt> :</h2>
<ul><li>AffineVariety * AffineVariety</li>
<li>CC * CC</li>
<li>CC * QQ</li>
<li>CC * RR</li>
<li>CC * ZZ</li>
<li>ChainComplexMap * ChainComplexMap</li>
<li>Constant * Constant</li>
<li>Constant * InexactNumber</li>
<li>Constant * Number</li>
<li>GradedModuleMap * GradedModuleMap</li>
<li>Ideal * CoherentSheaf</li>
<li>Ideal * Module</li>
<li>Ideal * Ring</li>
<li>Ideal * Vector</li>
<li>InexactNumber * Constant</li>
<li>Matrix * Number</li>
<li>Matrix * RingElement</li>
<li>Matrix * Vector</li>
<li>Matrix * ZZ</li>
<li>MonomialIdeal * Module</li>
<li>MonomialIdeal * MonomialIdeal</li>
<li>MonomialIdeal * Ring</li>
<li>MutableMatrix * MutableMatrix</li>
<li>Number * Constant</li>
<li>Number * Matrix</li>
<li>QQ * CC</li>
<li>QQ * QQ</li>
<li>QQ * RR</li>
<li>QQ * ZZ</li>
<li>Ring * Ideal</li>
<li>Ring * MonomialIdeal</li>
<li>Ring * RingElement</li>
<li>Ring * Vector</li>
<li>RingElement * ChainComplexMap</li>
<li>RingElement * GradedModuleMap</li>
<li>RingElement * Ideal</li>
<li>RingElement * Matrix</li>
<li>RingElement * Module</li>
<li>RingElement * MonomialIdeal</li>
<li>RingElement * MutableMatrix</li>
<li>RingElement * RingElement</li>
<li>RingElement * Vector</li>
<li>RingMap * RingMap</li>
<li>RR * CC</li>
<li>RR * QQ</li>
<li>RR * RR</li>
<li>RR * ZZ</li>
<li>Thing * List</li>
<li>ZZ * CC</li>
<li>ZZ * ProjectiveHilbertPolynomial</li>
<li>ZZ * QQ</li>
<li>ZZ * RR</li>
<li>ZZ * ZZ</li>
<li><span>QQ * BettiTally, see <span><a href="___Betti__Tally.html" title="the class of all Betti tallies">BettiTally</a> -- the class of all Betti tallies</span></span></li>
<li><span>ZZ * BettiTally, see <span><a href="___Betti__Tally.html" title="the class of all Betti tallies">BettiTally</a> -- the class of all Betti tallies</span></span></li>
<li><span>Constant * RingElement, see <span><a href="___Constant.html" title="">Constant</a></span></span></li>
<li><span>RingElement * Constant, see <span><a href="___Constant.html" title="">Constant</a></span></span></li>
<li><span>Expression * Expression, see <span><a href="___Expression.html" title="the class of all expressions">Expression</a> -- the class of all expressions</span></span></li>
<li><span><a href="___Ideal_sp_st_sp__Ideal.html" title="product of ideals">Ideal * Ideal</a> -- product of ideals</span></li>
<li><span>Ideal * MonomialIdeal, see <span><a href="___Ideal_sp_st_sp__Ideal.html" title="product of ideals">Ideal * Ideal</a> -- product of ideals</span></span></li>
<li><span>MonomialIdeal * Ideal, see <span><a href="___Ideal_sp_st_sp__Ideal.html" title="product of ideals">Ideal * Ideal</a> -- product of ideals</span></span></li>
<li><span><tt>InexactNumber * RingElement</tt> (missing documentation<!-- tag: (*,InexactNumber,RingElement) -->)</span></li>
<li><span><a href="___Matrix_sp_st_sp__Matrix.html" title="matrix multiplication">Matrix * Matrix</a> -- matrix multiplication</span></li>
<li><span><tt>RingElement * InexactNumber</tt> (missing documentation<!-- tag: (*,RingElement,InexactNumber) -->)</span></li>
<li><span><a href="___Set_sp_st_sp__Set.html" title="intersection of sets">Set * Set</a> -- intersection of sets</span></li>
</ul>
</div>
<div class="waystouse"><h2>For the programmer</h2>
<p>The object <a href="__st.html" title="a binary operator, usually used for multiplication">*</a> is <span>a <a href="___Keyword.html">keyword</a></span>.</p>
<div><div><p>This operator may be used as a binary operator in an expression like <tt>x*y</tt>.  The user may install <a href="_binary_spmethods.html" title="">binary methods</a> for handling such expressions with code such as</p>
<pre>         X * Y := (x,y) -> ...</pre>
<p>where <tt>X</tt> is the class of <tt>x</tt> and <tt>Y</tt> is the class of <tt>y</tt>.</p>
</div>
<div><p>This operator may be used as a prefix unary operator in an expression like <tt>*y</tt>.  The user may <a href="_installing_spmethods.html">install a method</a> for handling such expressions with code such as</p>
<pre>           * Y := (y) -> ...</pre>
<p>where <tt>Y</tt> is the class of <tt>y</tt>.</p>
</div>
</div>
</div>
</div>
</body>
</html>