Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 4211

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>degree(Module)</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_degree_lp__Projective__Hilbert__Polynomial_rp.html">next</a> | <a href="_degree_lp__Matrix_rp.html">previous</a> | <a href="_degree_lp__Projective__Hilbert__Polynomial_rp.html">forward</a> | <a href="_degree_lp__Matrix_rp.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>degree(Module)</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>degree M</tt></div>
</dd></dl>
</div>
</li>
<li><span>Function: <a href="_degree.html" title="">degree</a></span></li>
<li><div class="single">Inputs:<ul><li><span><tt>M</tt>, <span>a <a href="___Module.html">module</a></span>, over a polynomial ring or quotient of a polynomial ring, over a field k</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>an <a href="___Z__Z.html">integer</a></span>, the degree of <tt>M</tt></span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div>We assume that <tt>M</tt> is a graded (homogeneous) module over a singly graded polynomal ring or a quotient of a polynomial ring, over a field <tt>k</tt>.<p>If <tt>M</tt> is finite dimensional over <tt>k</tt>, the degree of <tt>M</tt> is its dimension over <tt>k</tt>.  Otherwise, the degree of <tt>M</tt> is the multiplicity of <tt>M</tt>, i.e., the integer <tt>d</tt> such that the Hilbert polynomial of <tt>M</tt> has the form <tt>z |--> d z^e/e! + lower terms in z.</tt></p>
<table class="examples"><tr><td><pre>i1 : R = ZZ/101[t,x,y,z];</pre>
</td></tr>
<tr><td><pre>i2 : degree (R^1 / (ideal vars R)^6)

o2 = 126</pre>
</td></tr>
<tr><td><pre>i3 : degree minors_2 matrix {{t,x,y},{x,y,z}}

o3 = 3</pre>
</td></tr>
</table>
<p>The algorithm computes the <a href="_hilbert__Series.html" title="compute the Hilbert series">hilbertSeries</a> of <tt>M</tt> (as a rational function), divides both numerator and denominator by <tt>1-T</tt> as often as possible, then evaluates both at <tt>T=1</tt> and returns the resulting quotient as a (possibly rational) number.  When the module has finite length, then the rational function is a polynomial, and evaluating it at 1 returns the dimension over the ground field, which for a graded (homogenous) is the same as the length.</p>
</div>
</div>
<div class="single"><h2>Caveat</h2>
<div>If the base ring is <a href="___Z__Z.html" title="the class of all integers">ZZ</a>, or the module is not homogeneous, it is likely that the answer is not what you would expect.  Similarly, if the degrees of the variables are not all <tt>{1}</tt>, then the answer is harder to interpret.  See <a href="_heft_spvectors.html" title="">heft vectors</a> and <a href="_multidegree.html" title="multidegree">multidegree</a>.</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_hilbert__Polynomial.html" title="compute the Hilbert polynomial">hilbertPolynomial</a> -- compute the Hilbert polynomial</span></li>
<li><span><a href="_is__Homogeneous.html" title="whether something is homogeneous (graded)">isHomogeneous</a> -- whether something is homogeneous (graded)</span></li>
</ul>
</div>
</div>
</body>
</html>