Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 4309

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>equality and containment</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_extracting_spgenerators_spof_span_spideal.html">next</a> | <a href="_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html">previous</a> | <a href="_extracting_spgenerators_spof_span_spideal.html">forward</a> | <a href="_sums_cm_spproducts_cm_spand_sppowers_spof_spideals.html">backward</a> | <a href="_ideals.html">up</a> | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<div><a href="index.html" title="">Macaulay2Doc</a> > <a href="_ideals.html" title="">ideals</a> > <a href="_equality_spand_spcontainment.html" title="">equality and containment</a></div>
<hr/>
<div><h1>equality and containment</h1>
<div>Equality and containment between two ideals in a polynomial ring (or quotient of a polynomial ring) is checked by comparing their respective Groebner bases.<h2>equal and not equal</h2>
Use <a href="__eq_eq.html" title="equality">Ideal == Ideal</a> to test if two ideals in the same ring are equal.<table class="examples"><tr><td><pre>i1 : R = QQ[a..d];</pre>
</td></tr>
<tr><td><pre>i2 : I = ideal (a^2*b-c^2, a*b^2-d^3, c^5-d);

o2 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i3 : J = ideal (a^2,b^2,c^2,d^2);

o3 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i4 : I == J

o4 = false</pre>
</td></tr>
<tr><td><pre>i5 : I != J

o5 = true</pre>
</td></tr>
</table>
<h2>normal form with respect to a Groebner basis and membership</h2>
The function <a href="_methods_spfor_spnormal_spforms_spand_spremainder.html" title="calculate the normal form of ring elements and matrices">RingElement % Ideal</a> reduces an element with respect to a Groebner basis of the ideal.<table class="examples"><tr><td><pre>i6 : (1+a+a^3+a^4) % J

o6 = a + 1

o6 : R</pre>
</td></tr>
</table>
We can then test membership in the ideal by comparing the answer to 0 using <a href="__eq_eq.html" title="equality">==</a>.<table class="examples"><tr><td><pre>i7 : (1+a+a^3+a^4) % J == 0

o7 = false</pre>
</td></tr>
<tr><td><pre>i8 : a^4 % J == 0

o8 = true</pre>
</td></tr>
</table>
<h2>containment for two ideals</h2>
Containment for two ideals is tested using <a href="_is__Subset.html" title="whether one object is a subset of another">isSubset</a>.<table class="examples"><tr><td><pre>i9 : isSubset(I,J)

o9 = false</pre>
</td></tr>
<tr><td><pre>i10 : isSubset(I,I+J)

o10 = true</pre>
</td></tr>
<tr><td><pre>i11 : isSubset(I+J,I)

o11 = false</pre>
</td></tr>
</table>
<h2>ideal equal to 1 or 0</h2>
Use the expression <tt>I == 1</tt> to see if the ideal is equal to the ring.  Use <tt>I == 0</tt> to see if the ideal is identically zero in the given ring.<table class="examples"><tr><td><pre>i12 : I = ideal (a^2-1,a^3+3);

o12 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i13 : I == 1

o13 = true</pre>
</td></tr>
<tr><td><pre>i14 : S = R/I

o14 = S

o14 : QuotientRing</pre>
</td></tr>
<tr><td><pre>i15 : S == 0

o15 = true</pre>
</td></tr>
</table>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="__eq_eq.html" title="equality">Ideal == Ideal</a> -- equality</span></li>
<li><span><a href="__eq_eq.html" title="equality">Ideal == ZZ</a> -- equality</span></li>
<li><span><a href="_!_eq.html" title="inequality">!=</a> -- inequality</span></li>
<li><span><a href="_methods_spfor_spnormal_spforms_spand_spremainder.html" title="calculate the normal form of ring elements and matrices">RingElement % Ideal</a> -- calculate the normal form of ring elements and matrices</span></li>
<li><span><a href="_is__Subset_lp__Ideal_cm__Ideal_rp.html" title="whether one object is a subset of another">isSubset(Ideal,Ideal)</a> -- whether one object is a subset of another</span></li>
</ul>
</div>
</div>
</body>
</html>