Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 4347

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>exterior algebras</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_symmetric_spalgebras.html">next</a> | <a href="_finite_spfield_spextensions.html">previous</a> | <a href="_symmetric_spalgebras.html">forward</a> | <a href="_finite_spfield_spextensions.html">backward</a> | <a href="_rings.html">up</a> | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<div><a href="index.html" title="">Macaulay2Doc</a> > <a href="_rings.html" title="">rings</a> > <a href="_exterior_spalgebras.html" title="">exterior algebras</a></div>
<hr/>
<div><h1>exterior algebras</h1>
<div>An exterior algebra is a polynomial ring where multiplication is mildly non-commutative, in that, for every x and y in the ring, y*x = (-1)^(deg(x) deg(y)) x*y, and that for every x of odd degree, x*x = 0.In Macaulay2, deg(x) is the degree of x, or the first degree of x, in case a multi-graded ring is being used.  The default degree for each variable is 1, so in this case, y*x = -x*y, if x and y are variables in the ring.<p/>
Create an exterior algebra with explicit generators by creating a polynomial ring with the option <a href="_monoid.html" title="make or retrieve a monoid">SkewCommutative</a>.<table class="examples"><tr><td><pre>i1 : R = QQ[x,y,z, SkewCommutative => true]

o1 = R

o1 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i2 : y*x

o2 = -x*y

o2 : R</pre>
</td></tr>
<tr><td><pre>i3 : (x+y+z)^2

o3 = 0

o3 : R</pre>
</td></tr>
<tr><td><pre>i4 : basis R

o4 = | 1 x xy xyz xz y yz z |

             1       8
o4 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i5 : basis(2,R)

o5 = | xy xz yz |

             1       3
o5 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
<table class="examples"><tr><td><pre>i6 : S = QQ[a,b,r,s,t, SkewCommutative=>true, Degrees=>{2,2,1,1,1}];</pre>
</td></tr>
<tr><td><pre>i7 : r*a == a*r

o7 = false</pre>
</td></tr>
<tr><td><pre>i8 : a*a

o8 = 0

o8 : S</pre>
</td></tr>
<tr><td><pre>i9 : f = a*r+b*s; f^2

o10 = -2a*b*r*s

o10 : S</pre>
</td></tr>
<tr><td><pre>i11 : basis(2,S)

o11 = | a b rs rt st |

              1       5
o11 : Matrix S  &lt;--- S</pre>
</td></tr>
</table>
All modules over exterior algebras are right modules.  This means that matrices multiply from the opposite side:<table class="examples"><tr><td><pre>i12 : x*y

o12 = x*y

o12 : R</pre>
</td></tr>
<tr><td><pre>i13 : matrix{{x}} * matrix{{y}}

o13 = | -xy |

              1       1
o13 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
You may compute Gröbner bases, syzygies, and form quotient rings of these skew commutative rings.</div>
</div>
</body>
</html>