Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 4569

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>inverse systems</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_inverse_lp__Matrix_rp.html">next</a> | <a href="_inverse.html">previous</a> | <a href="_inverse_lp__Matrix_rp.html">forward</a> | <a href="_inverse.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>inverse systems</h1>
<div>Suppose that R = k[x1,...,xn], and that E = k[y1,...,yn] is the injective envelop of k.  IE, E is given the R-module structure: x^A . y^B = y^(B-A), if B-A >= 0 in every component, and x^A . y^B = 0 otherwise.<p/>
If I is an ideal of R, then the submodule I' = Hom_R(R/I,E) of E is called the (Macaulay) inverse system of I.  I is zero-dimensional if and only if I' is finitely generated.<p/>
This is a dual operation, since I can be recovered as ann_R(I').<p/>
In Macaulay2, currently the computation of the inverse system I' (toDual) and of the ideal I from I' (fromDual) are restricted to the situation where I and I' are homogeneous.  As an example, let's compute the ideal corresponding to a cubic.<table class="examples"><tr><td><pre>i1 : R = QQ[a..e];</pre>
</td></tr>
<tr><td><pre>i2 : g = matrix{{a^3+b^3+c^3+d^3+e^3-d^2*e-a*b*c-a*d*e}}

o2 = | a3+b3-abc+c3+d3-ade-d2e+e3 |

             1       1
o2 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i3 : f = fromDual g

o3 = | ce be d2+ae+e2 cd bd ad+e2 bc+ae-de b2+ac ab+c2 a2-ae+de |

             1       10
o3 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i4 : I = ideal f

                       2          2                   2                    2
o4 = ideal (c*e, b*e, d  + a*e + e , c*d, b*d, a*d + e , b*c + a*e - d*e, b 
     ------------------------------------------------------------------------
                   2   2
     + a*c, a*b + c , a  - a*e + d*e)

o4 : Ideal of R</pre>
</td></tr>
</table>
The resulting ideal is always zero dimensional, and its Cohen-Macaulay type is the number of generators of the submodule E defined by g.  Therefore, if g is a 1 by 1 matrix, then the resulting ideal is Gorenstein.<table class="examples"><tr><td><pre>i5 : res I

      1      10      21      21      10      1
o5 = R  &lt;-- R   &lt;-- R   &lt;-- R   &lt;-- R   &lt;-- R  &lt;-- 0
                                                    
     0      1       2       3       4       5      6

o5 : ChainComplex</pre>
</td></tr>
<tr><td><pre>i6 : betti oo

            0  1  2  3  4 5
o6 = total: 1 10 21 21 10 1
         0: 1  .  .  .  . .
         1: . 10 16  5  . .
         2: .  .  5 16 10 .
         3: .  .  .  .  . 1

o6 : BettiTally</pre>
</td></tr>
</table>
<p/>
The other direction (starting with an ideal I) is more complicated, since the result may not be finitely generated.  So, we must give an integer d as well as the generators of I:<table class="examples"><tr><td><pre>i7 : toDual(3,f)

o7 = {12} | a3+b3-abc+c3+d3-ade-d2e+e3 |

             1       1
o7 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
The integer d has two interpretations.  The most general is that the (finitely generated) intersection of I' and the submodule generated by y1^d ... yn^d is returned.  If the ideal I is zero dimensional, d should be an integer such that x^(d+1) is in I = image f for every variable x.<table class="examples"><tr><td><pre>i8 : f = matrix{{a*b,c*d,e^2}}

o8 = | ab cd e2 |

             1       3
o8 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i9 : toDual(1,f)

o9 = {2} | ace |
     {2} | bce |
     {2} | ade |
     {2} | bde |

             4       1
o9 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i10 : toDual(2,f)

o10 = {5} | a2c2e |
      {5} | b2c2e |
      {5} | a2d2e |
      {5} | b2d2e |

              4       1
o10 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i11 : toDual(3,f)

o11 = {8} | a3c3e |
      {8} | b3c3e |
      {8} | a3d3e |
      {8} | b3d3e |

              4       1
o11 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i12 : g = toDual(4,f)

o12 = {11} | a4c4e |
      {11} | b4c4e |
      {11} | a4d4e |
      {11} | b4d4e |

              4       1
o12 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i13 : fromDual g

o13 = | e2 cd ab d5 c5 b5 a5 |

              1       7
o13 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_to__Dual.html" title="inverse system">toDual</a> -- inverse system</span></li>
<li><span><a href="_from__Dual.html" title="ideal from inverse system">fromDual</a> -- ideal from inverse system</span></li>
</ul>
</div>
</div>
</body>
</html>