Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 4775

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>module homomorphisms</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_right_spmodules_spor_spleft_spmodules_qu.html">next</a> | <a href="_subquotient_spmodules.html">previous</a> | <a href="_right_spmodules_spor_spleft_spmodules_qu.html">forward</a> | <a href="_subquotient_spmodules.html">backward</a> | <a href="_modules.html">up</a> | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<div><a href="index.html" title="">Macaulay2Doc</a> > <a href="_modules.html" title="">modules</a> > <a href="_module_sphomomorphisms.html" title="">module homomorphisms</a></div>
<hr/>
<div><h1>module homomorphisms</h1>
<div>A homomorphism <tt>f : M --> N</tt> is represented as a matrix from the generators of M to the generators of N.<table class="examples"><tr><td><pre>i1 : R = QQ[x,y]/(y^2-x^3);</pre>
</td></tr>
<tr><td><pre>i2 : M = module ideal(x,y)

o2 = image | x y |

                             1
o2 : R-module, submodule of R</pre>
</td></tr>
</table>
One homomorphism <tt>F : M --> R</tt> is <tt>x |--> y, y |--> x^2</tt> (this is multiplication by the fraction <tt>y/x</tt>).  We write this in the following way.<table class="examples"><tr><td><pre>i3 : F = map(R^1,M,matrix{{y,x^2}})

o3 = | y x2 |

o3 : Matrix</pre>
</td></tr>
</table>
Notice that as is usual in Macaulay2, the target comes before the source.<p/>
Macaulay2 doesn't display the source and target, unless they are both free modules.  Use <a href="_target.html" title="target of a map">target</a> and <a href="_source.html" title="source of a map">source</a> to get them.  The <a href="_matrix.html" title="make a matrix">matrix</a> routine recovers the matrix of free modules between the generators of the source and target.<table class="examples"><tr><td><pre>i4 : source F

o4 = image | x y |

                             1
o4 : R-module, submodule of R</pre>
</td></tr>
<tr><td><pre>i5 : target F == R^1

o5 = true</pre>
</td></tr>
<tr><td><pre>i6 : matrix F

o6 = | y x2 |

             1       2
o6 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
Macaulay2 also does not check that the homomorphism is well-defined (i.e. the relations of the source map into the relations of the target).  Use <a href="_is__Well__Defined.html" title="whether a map is well defined">isWellDefined</a> to check.  This generally requires a Gröbner basis computation (which is performed automatically, if it is required and has not already been done).<table class="examples"><tr><td><pre>i7 : isWellDefined F

o7 = true</pre>
</td></tr>
<tr><td><pre>i8 : isIsomorphism F

o8 = false</pre>
</td></tr>
</table>
The image of <tt>F</tt> lies in the submodule <tt>M</tt> of <tt>R^1</tt>.  Suppose we wish to define this new map <tt>G : M --> M</tt>.  How does one do this?<p/>
To obtain the map <tt>M --> M</tt>, we use <a href="___Matrix_sp_sl_sl_sp__Matrix.html" title="factor a map through another">Matrix // Matrix</a>.  In order to do this, we need the inclusion map of <tt>M</tt> into <tt>R^1</tt>.<table class="examples"><tr><td><pre>i9 : inc = inducedMap(R^1, M)

o9 = | x y |

o9 : Matrix</pre>
</td></tr>
</table>
Now we use // to lift <tt>F : M --> R^1</tt> along <tt>inc : M --> R^1</tt>, to obtain a map <tt>G : M --> M</tt>, such that <tt>inc * G == F</tt>.<table class="examples"><tr><td><pre>i10 : G = F // inc

o10 = {1} | 0 x |
      {1} | 1 0 |

o10 : Matrix</pre>
</td></tr>
<tr><td><pre>i11 : target G == M and source G == M

o11 = true</pre>
</td></tr>
<tr><td><pre>i12 : inc * G == F

o12 = true</pre>
</td></tr>
</table>
Let's make sure that this map <tt>G</tt> is welldefined.<table class="examples"><tr><td><pre>i13 : isWellDefined G

o13 = true</pre>
</td></tr>
<tr><td><pre>i14 : isIsomorphism G

o14 = false</pre>
</td></tr>
<tr><td><pre>i15 : prune coker G

o15 = cokernel | y x |

                             1
o15 : R-module, quotient of R</pre>
</td></tr>
<tr><td><pre>i16 : kernel G == 0

o16 = true</pre>
</td></tr>
</table>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_is__Well__Defined.html" title="whether a map is well defined">isWellDefined(Matrix)</a> -- whether a map is well defined</span></li>
<li><span><a href="_is__Isomorphism.html" title="whether a map is an isomorphism">isIsomorphism(Matrix)</a> -- whether a map is an isomorphism</span></li>
<li><span><a href="_is__Injective.html" title="whether a map is injective">isInjective(Matrix)</a> -- whether a map is injective</span></li>
<li><span><a href="_is__Surjective.html" title="whether a map is surjective">isSurjective(Matrix)</a> -- whether a map is surjective</span></li>
<li><span><a href="_kernel_lp__Matrix_rp.html" title="kernel of a matrix">kernel(Matrix)</a> -- kernel of a matrix</span></li>
<li><span><a href="_cokernel.html" title="cokernel of a map of modules, graded modules, or chaincomplexes">cokernel(Matrix)</a> -- cokernel of a map of modules, graded modules, or chaincomplexes</span></li>
<li><span><a href="___Matrix_sp_sl_sl_sp__Matrix.html" title="factor a map through another">Matrix // Matrix</a> -- factor a map through another</span></li>
</ul>
</div>
</div>
</body>
</html>