Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 4962

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>quotient(Ideal,Ideal) -- ideal or submodule quotient</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_quotient_lp__Matrix_cm__Groebner__Basis_rp.html">next</a> | <a href="_quotient_lp..._cm_sp__Strategy_sp_eq_gt_sp..._rp.html">previous</a> | <a href="_quotient_lp__Matrix_cm__Groebner__Basis_rp.html">forward</a> | <a href="_quotient_lp..._cm_sp__Strategy_sp_eq_gt_sp..._rp.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>quotient(Ideal,Ideal) -- ideal or submodule quotient</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>quotient(I,J)</tt><br/><tt>I:J</tt></div>
</dd></dl>
</div>
</li>
<li><span>Function: <a href="_quotient.html" title="quotient or division">quotient</a></span></li>
<li><div class="single">Inputs:<ul><li><span><tt>I</tt>, <span>an <a href="___Ideal.html">ideal</a></span>, <span>an <a href="___Ideal.html">ideal</a></span>, or <span>a <a href="___Module.html">module</a></span>, a submodule</span></li>
<li><span><tt>J</tt>, <span>an <a href="___Ideal.html">ideal</a></span>, <span>an <a href="___Ideal.html">ideal</a></span>, <span>a <a href="___Ring__Element.html">ring element</a></span>, or <span>a <a href="___Module.html">module</a></span>, a submodule</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>an <a href="___Ideal.html">ideal</a></span>, the ideal or submodule <i>I:J = {f | fJ&sub;I}</i></span></li>
</ul>
</div>
</li>
<li><div class="single"><a href="_using_spfunctions_spwith_spoptional_spinputs.html">Optional inputs</a>:<ul><li><span><a href="_quotient_lp..._cm_sp__Basis__Element__Limit_sp_eq_gt_sp..._rp.html">BasisElementLimit => ...</a>, </span></li>
<li><span><a href="_quotient_lp..._cm_sp__Degree__Limit_sp_eq_gt_sp..._rp.html">DegreeLimit => ...</a>, </span></li>
<li><span><a href="_quotient_lp..._cm_sp__Minimal__Generators_sp_eq_gt_sp..._rp.html">MinimalGenerators => ...</a>,  -- Decides whether quotient computes and outputs a trimmed set of generators; default is true</span></li>
<li><span><a href="_quotient_lp..._cm_sp__Pair__Limit_sp_eq_gt_sp..._rp.html">PairLimit => ...</a>, </span></li>
<li><span><a href="_quotient_lp..._cm_sp__Strategy_sp_eq_gt_sp..._rp.html">Strategy => ...</a>,  -- Possible strategies are: Iterate, Linear, and Quotient</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div>If <tt>I</tt> and <tt>J</tt> are both <a href="___Monomial__Ideal.html">monomial ideals</a>, then the result will be as well.  If <tt>I</tt> and <tt>J</tt> are both submodules of the same module, then the result will be an ideal, otherwise if <tt>J</tt> is an ideal or ring element, then the result is a submodule containing <tt>I</tt>.<p/>
Gröbner bases will be computed as needed.<p/>
The colon operator <a href="__co.html" title="a binary operator, uses include repetition; ideal quotients">:</a> may be used as an abbreviation of <tt>quotient</tt> if no options need to be supplied.<p/>
If the second input <tt>J</tt> is a ring element <tt>f</tt>, then the principal ideal generated by <tt>f</tt> is used.<p/>
The computation is not stored anywhere yet, BUT, it will soon be stored under <tt>I.cache.QuotientComputation{J}</tt>, or <tt>I.QuotientComputation{J}</tt>, so that the computation can be restarted after an interrupt.<table class="examples"><tr><td><pre>i1 : R = ZZ[a,b,c];</pre>
</td></tr>
<tr><td><pre>i2 : F = a^3-b^2*c-11*c^2

      3    2       2
o2 = a  - b c - 11c

o2 : R</pre>
</td></tr>
<tr><td><pre>i3 : I = ideal(F,diff(a,F),diff(b,F),diff(c,F))

             3    2       2    2            2
o3 = ideal (a  - b c - 11c , 3a , -2b*c, - b  - 22c)

o3 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i4 : I : (ideal(a,b,c))^3

                           2        2
o4 = ideal (11c, 3b, 33a, b , a*b, a )

o4 : Ideal of R</pre>
</td></tr>
</table>
If both arguments are submodules, the annihilator of <tt>J/I</tt> (or <tt>(J+I)/I</tt>) is returned.<table class="examples"><tr><td><pre>i5 : S = QQ[x,y,z];</pre>
</td></tr>
<tr><td><pre>i6 : J = image vars S

o6 = image | x y z |

                             1
o6 : S-module, submodule of S</pre>
</td></tr>
<tr><td><pre>i7 : I = image symmetricPower(2,vars S)

o7 = image | x2 xy xz y2 yz z2 |

                             1
o7 : S-module, submodule of S</pre>
</td></tr>
<tr><td><pre>i8 : (I++I) : (J++J)

o8 = ideal (z, y, x)

o8 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i9 : (I++I) : x+y+z

o9 = image | z y x 0 0 0 |
           | 0 0 0 z y x |

                             2
o9 : S-module, submodule of S</pre>
</td></tr>
<tr><td><pre>i10 : quotient(I,J)

o10 = ideal (z, y, x)

o10 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i11 : quotient(gens I, gens J)        

o11 = {1} | x y z 0 0 0 |
      {1} | 0 0 0 y z 0 |
      {1} | 0 0 0 0 0 z |

              3       6
o11 : Matrix S  &lt;--- S</pre>
</td></tr>
</table>
Ideal quotients and saturations are useful for manipulating components of ideals.  For example, <table class="examples"><tr><td><pre>i12 : I = ideal(x^2-y^2, y^3)

              2    2   3
o12 = ideal (x  - y , y )

o12 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i13 : J = ideal((x+y+z)^3, z^2)

              3     2        2    3     2               2        2       2  
o13 = ideal (x  + 3x y + 3x*y  + y  + 3x z + 6x*y*z + 3y z + 3x*z  + 3y*z  +
      -----------------------------------------------------------------------
       3   2
      z , z )

o13 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i14 : L = intersect(I,J)

              2 2    2 2    3      2 2       3     4     3      2          2 
o14 = ideal (x z  - y z , 2x y + 6x y  + 6x*y  + 2y  - 3x z - 3x y*z + 3x*y z
      -----------------------------------------------------------------------
          3    4     2 2       3     4     3      2          2      3    3 2
      + 3y z, x  - 6x y  - 8x*y  - 3y  + 6x z + 6x y*z - 6x*y z - 6y z, y z )

o14 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i15 : L : z^2

              2    2   3
o15 = ideal (x  - y , y )

o15 : Ideal of S</pre>
</td></tr>
<tr><td><pre>i16 : L : I == J

o16 = true</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_saturate.html" title="saturation of ideal or submodule">saturate</a> -- saturation of ideal or submodule</span></li>
<li><span><a href="__co.html" title="a binary operator, uses include repetition; ideal quotients">:</a> -- a binary operator, uses include repetition; ideal quotients</span></li>
</ul>
</div>
</div>
</body>
</html>