Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 5057

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>saturate -- saturation of ideal or submodule</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_saturate_lp..._cm_sp__Basis__Element__Limit_sp_eq_gt_sp..._rp.html">next</a> | <a href="_same.html">previous</a> | <a href="_saturate_lp..._cm_sp__Basis__Element__Limit_sp_eq_gt_sp..._rp.html">forward</a> | <a href="_same.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>saturate -- saturation of ideal or submodule</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>saturate(I,J)</tt><br/><tt>saturate I</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>I</tt>, <span>an <a href="___Ideal.html">ideal</a></span>, <span>a <a href="___Module.html">module</a></span>, or <span>a <a href="___Monomial__Ideal.html">monomial ideal</a></span></span></li>
<li><span><tt>J</tt>, <span>an <a href="___Ideal.html">ideal</a></span> or <span>a <a href="___Ring__Element.html">ring element</a></span>.  If not present, then <tt>J</tt> is the ideal generated by the variables of the ring</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>an <a href="___Ideal.html">ideal</a></span>, <span>a <a href="___Module.html">module</a></span>, or <span>a <a href="___Monomial__Ideal.html">monomial ideal</a></span>, the saturation of <tt>I</tt> with respect to <tt>J</tt></span></li>
</ul>
</div>
</li>
<li><div class="single"><a href="_using_spfunctions_spwith_spoptional_spinputs.html">Optional inputs</a>:<ul><li><span><a href="_saturate_lp..._cm_sp__Basis__Element__Limit_sp_eq_gt_sp..._rp.html">BasisElementLimit => ...</a>, </span></li>
<li><span><a href="_saturate_lp..._cm_sp__Degree__Limit_sp_eq_gt_sp..._rp.html">DegreeLimit => ...</a>, </span></li>
<li><span><a href="_saturate_lp..._cm_sp__Minimal__Generators_sp_eq_gt_sp..._rp.html">MinimalGenerators => ...</a>,  -- whether to compute minimal generators</span></li>
<li><span><a href="_saturate_lp..._cm_sp__Pair__Limit_sp_eq_gt_sp..._rp.html">PairLimit => ...</a>, </span></li>
<li><span><a href="_saturate_lp..._cm_sp__Strategy_sp_eq_gt_sp..._rp.html">Strategy => ...</a>, </span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p/>
If I is either an ideal or a submodule of a module M, the saturation (I : J^*) is defined to be the set of elements f in the ring (first case) or in M (second case) such that J^N * f is contained in I, for some N large enough.<p/>
For example, one way to homogenize an ideal is to homogenize the generators and then saturate with respect to the homogenizing variable.<table class="examples"><tr><td><pre>i1 : R = ZZ/32003[a..d];</pre>
</td></tr>
<tr><td><pre>i2 : I = ideal(a^3-b, a^4-c)

             3       4
o2 = ideal (a  - b, a  - c)

o2 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i3 : Ih = homogenize(I,d)

             3      2   4      3
o3 = ideal (a  - b*d , a  - c*d )

o3 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i4 : saturate(Ih,d)

                        2     2    3      2   3      2
o4 = ideal (a*b - c*d, a c - b d, b  - a*c , a  - b*d )

o4 : Ideal of R</pre>
</td></tr>
</table>
We can use this command to remove graded submodules of finite length.<table class="examples"><tr><td><pre>i5 : m = ideal vars R

o5 = ideal (a, b, c, d)

o5 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i6 : M = R^1 / (a * m^2)

o6 = cokernel | a3 a2b a2c a2d ab2 abc abd ac2 acd ad2 |

                            1
o6 : R-module, quotient of R</pre>
</td></tr>
<tr><td><pre>i7 : M / saturate 0_M

o7 = cokernel | a a3 a2b a2c a2d ab2 abc abd ac2 acd ad2 |

                            1
o7 : R-module, quotient of R</pre>
</td></tr>
</table>
<p/>
If I and J are both monomial ideals, then a faster algorithm is used.  If I or J is not a monomial ideal, generally Gröbner bases will be used to the compute the saturation.  These will be computed as needed.<p/>
The computation is currently not stored anywhere: this means that the computation cannot be continued after an interrupt.  This will be changed in a later version.</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_quotient.html" title="quotient or division">quotient</a> -- quotient or division</span></li>
<li><span><a href="../../PrimaryDecomposition/html/index.html" title="">PrimaryDecomposition</a></span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>saturate</tt> :</h2>
<ul><li>saturate(Ideal)</li>
<li>saturate(Ideal,Ideal)</li>
<li>saturate(Ideal,RingElement)</li>
<li>saturate(Module)</li>
<li>saturate(Module,Ideal)</li>
<li>saturate(Module,RingElement)</li>
<li>saturate(MonomialIdeal,MonomialIdeal)</li>
<li>saturate(MonomialIdeal,RingElement)</li>
</ul>
</div>
</div>
</body>
</html>