Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 5073

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>schreyerOrder(Matrix) -- create a matrix with the same entries whose source free module has a Schreyer monomial order</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_schreyer__Order_lp__Module_rp.html">next</a> | <a href="_schreyer__Order.html">previous</a> | <a href="_schreyer__Order_lp__Module_rp.html">forward</a> | <a href="_schreyer__Order.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>schreyerOrder(Matrix) -- create a matrix with the same entries whose source free module has a Schreyer monomial order</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>schreyerOrder m</tt></div>
</dd></dl>
</div>
</li>
<li><span>Function: <a href="_schreyer__Order.html" title="create or obtain free modules with Schryer monomial orders">schreyerOrder</a></span></li>
<li><div class="single">Inputs:<ul><li><span><tt>m</tt>, <span>a <a href="___Matrix.html">matrix</a></span>, G &lt;-- F between free modules</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>a <a href="___Matrix.html">matrix</a></span>, the same matrix as <tt>m</tt>, except that its source free module is endowed with a Schreyer, or induced, monomial order</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div>Given a matrix <i>m : F --> G</i>, the Schreyer order on the monomials of F is given by: If <i>a e<sub>i</sub></i> and <i>b e<sub>j</sub></i> are monomials of <i>F</i>, i.e. <i>a</i> and <i>b</i> are monomials in the ring, and <i>e<sub>i</sub></i> and <i>e<sub>j</sub></i> are unit column vectors of <i>F</i>, then <i>a e<sub>i</sub> > b e<sub>j</sub></i> if and only if either <i>leadterm(m)(a e<sub>i</sub>) > leadterm(m)(b e<sub>j</sub>)</i> or they are scalar multiples of the same monomial in <i>G</i>, and <i>i > j</i>.<p/>
If the base ring is a quotient ring, we think of <tt>leadterm(m)</tt> as a matrix over the ambient polynomial ring for the purpose of this definition.<p/>
In the example below, the source of <tt>f</tt> is endowed with a Schreyer order.<table class="examples"><tr><td><pre>i1 : R = ZZ/101[a..d];</pre>
</td></tr>
<tr><td><pre>i2 : m = matrix{{a,b,c,d}};

             1       4
o2 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i3 : f = schreyerOrder m

o3 = | a b c d |

             1       4
o3 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i4 : g = syz f

o4 = {1} | -b 0  -c 0  0  -d |
     {1} | a  -c 0  0  -d 0  |
     {1} | 0  b  a  -d 0  0  |
     {1} | 0  0  0  c  b  a  |

             4       6
o4 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i5 : leadTerm g

o5 = {1} | 0 0 0 0 0 0 |
     {1} | a 0 0 0 0 0 |
     {1} | 0 b a 0 0 0 |
     {1} | 0 0 0 c b a |

             4       6
o5 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i6 : hf = map(source f, 1, {{d},{c},{b},{a}})

o6 = {1} | d |
     {1} | c |
     {1} | b |
     {1} | a |

             4       1
o6 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i7 : hm = map(source m, 1, {{d},{c},{b},{a}})        

o7 = {1} | d |
     {1} | c |
     {1} | b |
     {1} | a |

             4       1
o7 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i8 : leadTerm hf

o8 = {1} | 0 |
     {1} | 0 |
     {1} | b |
     {1} | 0 |

             4       1
o8 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i9 : leadTerm hm

o9 = {1} | 0 |
     {1} | 0 |
     {1} | 0 |
     {1} | a |

             4       1
o9 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
Use <a href="_schreyer__Order_lp__Module_rp.html" title="obtain Schreyer order information">schreyerOrder(Module)</a> to see if a free module is endowed with a Schreyer order.<table class="examples"><tr><td><pre>i10 : schreyerOrder source m

o10 = 0

                     4
o10 : Matrix 0 &lt;--- R</pre>
</td></tr>
<tr><td><pre>i11 : schreyerOrder source f

o11 = | a 0 0 0 |
      | 0 b 0 0 |
      | 0 0 c 0 |
      | 0 0 0 d |

              4       4
o11 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="___Schreyer_sporders.html" title="induced monomial order on a free module">Schreyer orders</a> -- induced monomial order on a free module</span></li>
<li><span><a href="_monomial_sporders_spfor_spfree_spmodules.html" title="">monomial orders for free modules</a></span></li>
<li><span><a href="_lead__Term.html" title="get the greatest term">leadTerm</a> -- get the greatest term</span></li>
<li><span><a href="_schreyer__Order_lp__Module_rp.html" title="obtain Schreyer order information">schreyerOrder(Module)</a> -- obtain Schreyer order information</span></li>
</ul>
</div>
</div>
</body>
</html>