Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 5587

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>points -- produces the ideal and initial ideal from the coordinates of a finite set of points</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_points__By__Intersection.html">next</a> | <a href="_make__Ring__Maps.html">previous</a> | <a href="_points__By__Intersection.html">forward</a> | <a href="_make__Ring__Maps.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>points -- produces the ideal and initial ideal from the coordinates of a finite set of points</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>(Q,inG,G) = points(M,R)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>M</tt>, <span>a <a href="../../Macaulay2Doc/html/___Matrix.html">matrix</a></span>, in which each column consists of the coordinates of a point</span></li>
<li><span><tt>R</tt>, <span>a <a href="../../Macaulay2Doc/html/___Polynomial__Ring.html">polynomial ring</a></span>, coordinate ring of the affine space containing the points</span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>Q</tt>, <span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span>, list of standard monomials</span></li>
<li><span><tt>inG</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span>, initial ideal of the set of points</span></li>
<li><span><tt>G</tt>, <span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span>, list of generators for Grobner basis for ideal of points</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div>This function uses the Buchberger-Moeller algorithm to compute a grobner basis for the ideal of a finite number of points in affine space.  Here is a simple example.<table class="examples"><tr><td><pre>i1 : M = random(ZZ^3, ZZ^5)

o1 = | 8 9 9 3 9 |
     | 3 0 1 2 7 |
     | 6 9 4 9 9 |

              3        5
o1 : Matrix ZZ  &lt;--- ZZ</pre>
</td></tr>
<tr><td><pre>i2 : R = QQ[x,y,z]

o2 = R

o2 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i3 : (Q,inG,G) = points(M,R)

                    2                     2        2   3           2       
o3 = ({1, z, y, x, z }, ideal (y*z, x*z, y , x*y, x , z ), {y*z - z  - 9y +
                                                                           
     ------------------------------------------------------------------------
                     1 2        31         2   101 2   5         241    73 
     12z - 27, x*z + -z  - 9x - --z + 99, y  - ---z  - -x - 7y + ---z - --,
                     2           2              90     3          18     5 
     ------------------------------------------------------------------------
           1 2             13         2   5 2         65        3      2
     x*y - -z  - 2x - 9y + --z + 12, x  - -z  - 12x + --z - 3, z  - 19z  +
           6                6             6            6
     ------------------------------------------------------------------------
     114z - 216})

o3 : Sequence</pre>
</td></tr>
<tr><td><pre>i4 : monomialIdeal G == inG

o4 = true</pre>
</td></tr>
</table>
<p/>
Next a larger example that shows that the Buchberger-Moeller algorithm in <tt>points</tt> may be faster than the alternative method using the intersection of the ideals for each point.<table class="examples"><tr><td><pre>i5 : R = ZZ/32003[vars(0..4), MonomialOrder=>Lex]

o5 = R

o5 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i6 : M = random(ZZ^5, ZZ^150)

o6 = | 0 1 0 7 0 3 1 8 2 3 0 0 7 5 0 3 0 5 6 6 9 3 5 2 5 1 1 3 3 6 0 6 1 9 5
     | 6 8 2 9 3 0 8 9 6 8 8 3 5 7 5 4 3 3 6 6 3 0 4 2 3 1 3 3 4 1 2 9 7 3 3
     | 7 0 2 3 3 4 6 0 8 0 2 7 7 7 0 8 1 3 8 9 9 8 0 7 3 5 7 7 9 6 3 3 2 8 5
     | 2 9 8 5 9 0 7 1 0 0 7 5 4 8 8 6 6 5 5 8 3 3 4 0 7 6 9 5 5 3 6 9 8 0 9
     | 4 4 6 3 3 7 5 3 7 8 9 9 4 5 2 1 5 2 9 6 1 5 9 5 5 1 0 8 2 4 0 2 9 1 3
     ------------------------------------------------------------------------
     5 5 8 3 2 4 9 1 7 6 3 9 4 9 8 7 4 6 8 7 1 6 6 2 1 2 9 1 7 5 9 5 9 8 4 8
     1 9 2 3 2 1 1 0 0 2 3 7 9 4 2 8 3 9 9 7 5 8 7 4 9 3 8 3 5 4 2 4 4 0 3 6
     9 8 9 9 8 9 5 2 1 8 7 8 4 8 0 9 8 7 2 8 3 3 7 7 5 6 8 8 2 8 4 7 4 5 3 4
     9 0 1 6 9 7 5 6 6 9 8 1 3 9 1 1 3 6 0 0 3 4 3 3 3 0 1 1 7 9 8 7 0 8 4 9
     6 1 4 9 0 8 2 5 5 4 4 0 0 5 0 4 0 0 8 1 7 7 4 7 2 3 4 9 7 1 5 2 1 7 1 9
     ------------------------------------------------------------------------
     7 8 4 9 0 7 1 6 1 4 1 3 1 6 6 6 3 5 6 6 3 1 3 1 1 3 5 0 9 8 9 6 4 8 1 1
     8 8 0 8 4 4 5 5 6 3 5 8 9 2 8 7 9 8 6 8 0 2 7 8 1 0 0 6 7 6 1 5 2 4 6 6
     8 4 1 4 6 4 2 3 7 8 9 3 0 4 9 5 7 4 4 7 8 5 1 2 6 4 5 2 5 9 5 1 2 9 5 2
     2 0 7 2 8 7 8 5 0 6 3 7 9 9 5 4 5 0 5 8 6 9 6 4 0 6 4 5 7 9 9 6 9 1 6 0
     1 5 6 9 3 5 5 6 1 5 8 9 3 7 9 3 7 6 2 6 8 6 0 6 3 1 3 3 1 2 6 7 6 0 1 9
     ------------------------------------------------------------------------
     9 2 8 9 9 7 8 7 6 8 4 8 7 1 8 3 9 4 7 4 5 8 5 2 0 0 1 3 9 0 3 2 2 5 8 9
     9 3 4 4 9 8 5 8 7 6 6 1 0 9 1 6 9 3 5 9 4 4 7 1 7 5 4 2 8 1 5 5 2 7 0 8
     9 3 2 1 4 2 1 1 3 3 2 3 3 5 7 2 9 0 9 5 2 5 6 9 7 7 6 7 5 6 8 2 6 5 0 5
     5 4 5 0 7 0 4 3 6 0 4 0 9 6 9 8 1 2 2 5 0 6 2 8 3 9 9 3 7 3 8 6 3 4 9 7
     9 1 0 1 5 4 1 2 9 5 3 0 2 1 8 6 8 3 3 4 4 2 2 4 1 7 0 8 5 7 7 4 8 1 1 6
     ------------------------------------------------------------------------
     2 6 7 5 2 9 3 |
     5 1 9 5 0 0 8 |
     6 0 6 0 1 9 5 |
     6 9 0 9 3 2 2 |
     2 5 0 4 5 0 6 |

              5        150
o6 : Matrix ZZ  &lt;--- ZZ</pre>
</td></tr>
<tr><td><pre>i7 : time J = pointsByIntersection(M,R);
     -- used 4.22736 seconds</pre>
</td></tr>
<tr><td><pre>i8 : time C = points(M,R);
     -- used 0.535918 seconds</pre>
</td></tr>
<tr><td><pre>i9 : J == C_2  

o9 = true</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_points__By__Intersection.html" title="computes ideal of point set by intersecting maximal ideals">pointsByIntersection</a> -- computes ideal of point set by intersecting maximal ideals</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>points</tt> :</h2>
<ul><li>points(Matrix,Ring)</li>
</ul>
</div>
</div>
</body>
</html>