Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 5945

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>distinguished -- compute the distinguished subvarieties of a scheme</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_distinguished__And__Mult.html">next</a> | <a href="_associated__Graded__Ring.html">previous</a> | <a href="_distinguished__And__Mult.html">forward</a> | <a href="_associated__Graded__Ring.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>distinguished -- compute the distinguished subvarieties of a scheme</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>distinguished I</tt><br/><tt>distinguished(I,f)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>I</tt>, <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span></span></li>
<li><span><tt>f</tt>, <span>a <a href="../../Macaulay2Doc/html/___Ring__Element.html">ring element</a></span>, optional argument, if given it should be a non-zero divisor in the ideal <tt>I</tt></span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>a <a href="../../Macaulay2Doc/html/___List.html">list</a></span></span></li>
</ul>
</div>
</li>
<li><div class="single"><a href="../../Macaulay2Doc/html/_using_spfunctions_spwith_spoptional_spinputs.html">Optional inputs</a>:<ul><li><span><a href="_symmetric__Kernel_lp..._cm_sp__Variable_sp_eq_gt_sp..._rp.html">Variable => ...</a>,  -- Choose name for variables in the created ring</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p>Let <i>I&sub;R</i> be an ideal in a ring <i>R</i>, the image of a free <i>R</i>-module <i>F</i>. Let <i>ReesI</i> be the Rees algebra of <i>I</i>.  Certain of the minimal primes of <i>I</i> are distinguished from the point of view of intersection theory: These are the ones that correspond to primes <i>P&sub;ReesI</i> minimal among those containing <i>I*ReesI</i>---in other words, the isolated components of the support of the normal cone of <i>I</i>. The prime <i>p</i> corresponding to <i>P</i> is simply the kernel of the the induced map <i>R &rarr;ReesI/P</i>.</p>
<p>Each of these primes comes equipped with a multiplicity, which may be computed as the ratio <i>degree(ReesI/P)/degree(R/p)</i>.</p>
<p>For these matters and their significance, see section 6.1 of the book &ldquo;Intersection Theory,&rdquo; by William Fulton, and the references there, along with the paper</p>
<p>&ldquo;A geometric effective Nullstellensatz.&rdquo; Invent. Math. 137 (1999), no. 2, 427--448 by Ein and Lazarsfeld.</p>
<div/>
<table class="examples"><tr><td><pre>i1 : T = ZZ/101[c,d];</pre>
</td></tr>
<tr><td><pre>i2 : D = 4;</pre>
</td></tr>
<tr><td><pre>i3 : P = product(D, i -> random(1,T))

          4      3       2 2       3      4
o3 = - 34c  + 41c d + 30c d  + 7c*d  - 36d

o3 : T</pre>
</td></tr>
<tr><td><pre>i4 : R = ZZ/101[a,b,c,d]

o4 = R

o4 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i5 : I = ideal(a^2, a*b*(substitute(P,R)), b^2)

             2           4          3           2 2           3          4 
o5 = ideal (a , - 34a*b*c  + 41a*b*c d + 30a*b*c d  + 7a*b*c*d  - 36a*b*d ,
     ------------------------------------------------------------------------
      2
     b )

o5 : Ideal of R</pre>
</td></tr>
</table>
<div>There is one minimal associated prime (a thick line in <i>P<sup>3</sup></i>) and <i>D</i> embedded primes (points on the line).</div>
<table class="examples"><tr><td><pre>i6 : ass I

o6 = {ideal (b, a), ideal (c - 13d, b, a), ideal (c - 39d, b, a), ideal (c -
     ------------------------------------------------------------------------
     11d, b, a), ideal (c + 41d, b, a)}

o6 : List</pre>
</td></tr>
<tr><td><pre>i7 : primaryDecomposition I

              2        2                    2   2                    2   2  
o7 = {ideal (b , a*b, a ), ideal (c - 13d, b , a ), ideal (c + 41d, b , a ),
     ------------------------------------------------------------------------
                      2   2                    2   2
     ideal (c - 11d, b , a ), ideal (c - 39d, b , a )}

o7 : List</pre>
</td></tr>
</table>
<div>Only the minimal prime is a distinguished component, and it has multiplicity 2.</div>
<table class="examples"><tr><td><pre>i8 : distinguished(I)

o8 = {ideal (b, a)}

o8 : List</pre>
</td></tr>
<tr><td><pre>i9 : K = distinguishedAndMult(I)

o9 = {{2, ideal (b, a)}}

o9 : List</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_distinguished__And__Mult.html" title="compute the distinguished subvarieties of a scheme along with their multiplicities">distinguishedAndMult</a> -- compute the distinguished subvarieties of a scheme along with their multiplicities</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>distinguished</tt> :</h2>
<ul><li>distinguished(Ideal)</li>
<li>distinguished(Ideal,RingElement)</li>
</ul>
</div>
</div>
</body>
</html>