Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 5960

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>universalEmbedding -- Compute the universal embedding</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_which__Gm.html">next</a> | <a href="___Tries.html">previous</a> | <a href="_which__Gm.html">forward</a> | <a href="___Tries.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>universalEmbedding -- Compute the universal embedding</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>u = universalEmbedding M</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>M</tt>, <span>a <a href="../../Macaulay2Doc/html/___Module.html">module</a></span>, or <span>an <a href="../../Macaulay2Doc/html/___Ideal.html">ideal</a></span></span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><tt>u</tt>, <span>a <a href="../../Macaulay2Doc/html/___Matrix.html">matrix</a></span>, defining the universal embedding of the <tt>R</tt>-module <tt>M</tt> into a free <tt>R</tt>-module.</span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p>Suppose that M has free presentation <i>F&rarr;G</i>.  universalEmbedding provides the universal map from the input module M into a free module H over the same ring, written as a map <i>u:M &rarr;H</i>, such that any map from <i>M</i> to a free <i>R</i>-module, factors uniquely through <i>u</i>.  Let <i>u1</i> be the map <i>u1: G&rarr;H</i> induced by composing <i>u</i> with the surjection <i>p: G &rarr;M</i>.  By definition, the Rees algebra of <i>M</i> is the image of the induced map <i>Sym(u1): Sym(G)&rarr;Sym(H)</i>, and thus can be computed with symmetricKernel(u1).  The map u is computed from the dual of the first syzygy map of the dual of the presentation of <i>M</i>.</p>
<div>We first give a simple example looking at the syzygy matrix of the cube of the maximial ideal of a polynomial ring.</div>
<table class="examples"><tr><td><pre>i1 : S = ZZ/101[x,y,z];</pre>
</td></tr>
<tr><td><pre>i2 : FF=res ((ideal vars S)^3);</pre>
</td></tr>
<tr><td><pre>i3 : M=coker (FF.dd_2)

o3 = cokernel {3} | -y 0  0  -z 0  0  0  0  0  0  0  0  0  0  0  |
              {3} | x  -y 0  0  -z 0  0  0  0  0  0  0  0  0  0  |
              {3} | 0  x  -y 0  0  0  -z 0  0  0  0  0  0  0  0  |
              {3} | 0  0  x  0  0  0  0  0  -z 0  0  0  0  0  0  |
              {3} | 0  0  0  x  y  -y 0  0  0  -z 0  0  0  0  0  |
              {3} | 0  0  0  0  0  x  y  -y 0  0  -z 0  0  0  0  |
              {3} | 0  0  0  0  0  0  0  x  y  0  0  0  -z 0  0  |
              {3} | 0  0  0  0  0  0  0  0  0  x  y  -y 0  -z 0  |
              {3} | 0  0  0  0  0  0  0  0  0  0  0  x  y  0  -z |
              {3} | 0  0  0  0  0  0  0  0  0  0  0  0  0  x  y  |

                            10
o3 : S-module, quotient of S</pre>
</td></tr>
<tr><td><pre>i4 : universalEmbedding M

o4 = | x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3 |

o4 : Matrix</pre>
</td></tr>
</table>
<div>A more complicated example.</div>
<table class="examples"><tr><td><pre>i5 : x = symbol x;</pre>
</td></tr>
<tr><td><pre>i6 : R=QQ[x_1..x_8];</pre>
</td></tr>
<tr><td><pre>i7 : m1=genericMatrix(R,x_1,2,2); m2=genericMatrix(R,x_5,2,2);

             2       2
o7 : Matrix R  &lt;--- R

             2       2
o8 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i9 : m=m1*m2

o9 = | x_1x_5+x_3x_6 x_1x_7+x_3x_8 |
     | x_2x_5+x_4x_6 x_2x_7+x_4x_8 |

             2       2
o9 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i10 : d1=minors(2,m1); d2=minors(2,m2);

o10 : Ideal of R

o11 : Ideal of R</pre>
</td></tr>
<tr><td><pre>i12 : M=matrix{{0,d1_0,m_(0,0),m_(0,1)},           {0,0,m_(1,0),m_(1,1)},          {0,0,0,d2_0},           {0,0,0,0}}

o12 = | 0 -x_2x_3+x_1x_4 x_1x_5+x_3x_6 x_1x_7+x_3x_8  |
      | 0 0              x_2x_5+x_4x_6 x_2x_7+x_4x_8  |
      | 0 0              0             -x_6x_7+x_5x_8 |
      | 0 0              0             0              |

              4       4
o12 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i13 : M=M-(transpose M);

              4       4
o13 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i14 : N= coker(res coker transpose M).dd_2

o14 = cokernel {0} | -x_2x_5-x_4x_6 -x_2x_7-x_4x_8 x_6x_7-x_5x_8  0              |
               {2} | x_2x_3-x_1x_4  0              x_1x_7+x_3x_8  x_2x_7+x_4x_8  |
               {2} | -x_1x_5-x_3x_6 -x_1x_7-x_3x_8 0              -x_6x_7+x_5x_8 |
               {2} | 0              x_2x_3-x_1x_4  -x_1x_5-x_3x_6 -x_2x_5-x_4x_6 |

                             4
o14 : R-module, quotient of R</pre>
</td></tr>
<tr><td><pre>i15 : universalEmbedding(N)

o15 = {-1} | x_1 -x_6 -x_2 -x_8 |
      {-1} | x_3 x_5  -x_4 x_7  |

o15 : Matrix</pre>
</td></tr>
</table>
<p></p>
<div>Here is an example from the paper "What is the Rees Algebra of a Module" by David Eisenbud, Craig Huneke and Bernd Ulrich, Proc. Am. Math. Soc. 131, 701--708, 2002.  The example shows that one cannot, in general, define the Rees algebra of a module by using *any* embedding of that module, even when the module is isomorphic to an ideal; this is the reason for using the map provided by the routine universalEmbedding. Note that the same paper shows that such problems do not arise when the ring is torsion-free as a ZZ-module, or when one takes the natural embedding of the ideal into the ring.</div>
<table class="examples"><tr><td><pre>i16 : p = 3;</pre>
</td></tr>
<tr><td><pre>i17 : S = ZZ/p[x,y,z];</pre>
</td></tr>
<tr><td><pre>i18 : R = S/((ideal(x^p,y^p))+(ideal(x,y,z))^(p+1))

o18 = R

o18 : QuotientRing</pre>
</td></tr>
<tr><td><pre>i19 : I = module ideal(z)

o19 = image | z |

                              1
o19 : R-module, submodule of R</pre>
</td></tr>
</table>
<div>As a module (or ideal), <i>Hom(I,R<sup>1</sup>)</i> is minimally generated by 3 elements, and thus the universal embedding of <i>I</i> into a free module is into <i>R<sup>3</sup></i>.</div>
<table class="examples"><tr><td><pre>i20 : betti Hom(I,R^1)

             0  1
o20 = total: 3 14
          0: 3  3
          1: .  2
          2: .  9

o20 : BettiTally</pre>
</td></tr>
<tr><td><pre>i21 : ui = universalEmbedding I

o21 = | z |
      | y |
      | x |

o21 : Matrix</pre>
</td></tr>
</table>
<div>it is injective:</div>
<table class="examples"><tr><td><pre>i22 : kernel ui

o22 = image 0

                              1
o22 : R-module, submodule of R</pre>
</td></tr>
</table>
<div>It is easy to make two other embeddings of <i>I</i> into free modules. First, the natural inclusion of <i>I</i> into <i>R</i> as an ideal is</div>
<table class="examples"><tr><td><pre>i23 : inci = map(R^1,I,matrix{{z}})

o23 = | z |

o23 : Matrix</pre>
</td></tr>
<tr><td><pre>i24 : kernel inci

o24 = image 0

                              1
o24 : R-module, submodule of R</pre>
</td></tr>
</table>
<div>and second, the map defined by multiplication by x and y.</div>
<table class="examples"><tr><td><pre>i25 : gi = map(R^2, I, matrix{{x},{y}})

o25 = | x |
      | y |

o25 : Matrix</pre>
</td></tr>
<tr><td><pre>i26 : kernel gi

o26 = image 0

                              1
o26 : R-module, submodule of R</pre>
</td></tr>
</table>
<div>We can compose ui, inci and gi with a surjection R--> i to get maps u:R<sup>1</sup> --> R<sup>3</sup>, inc: R<sup>1</sup> --> R<sup>1</sup> and g:R<sup>1</sup> --> R<sup>2</sup> having image i</div>
<table class="examples"><tr><td><pre>i27 : u= map(R^3,R^{-1},ui)

o27 = | z |
      | y |
      | x |

              3       1
o27 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i28 : inc=map(R^1, R^{-1}, matrix{{z}})

o28 = | z |

              1       1
o28 : Matrix R  &lt;--- R</pre>
</td></tr>
<tr><td><pre>i29 : g=map(R^2, R^{-1}, matrix{{x},{y}})

o29 = | x |
      | y |

              2       1
o29 : Matrix R  &lt;--- R</pre>
</td></tr>
</table>
<div>We now form the symmetric kernels of these maps and compare them.  Note that since symmetricKernel defines a new ring, we must bring them to the same ring to make the comparison.  First the map u, which would be used by reesIdeal:</div>
<table class="examples"><tr><td><pre>i30 : A=symmetricKernel u

              3       2       2     2                 2         2     2     
o30 = ideal (z w , y*z w , x*z w , y z*w , x*y*z*w , x z*w , x*y w , x y*w ,
                0       0       0       0         0       0       0       0 
      -----------------------------------------------------------------------
       2 2       2       2   2 2       2   2 2     3     3     3   4
      z w , y*z*w , x*z*w , y w , x*y*w , x w , z*w , y*w , x*w , w )
         0       0       0     0       0     0     0     0     0   0

o30 : Ideal of R[w ]
                  0</pre>
</td></tr>
</table>
<div>Next the inclusion:</div>
<table class="examples"><tr><td><pre>i31 : B1=symmetricKernel inc

              3       2       2     2                 2         2     2     
o31 = ideal (z w , y*z w , x*z w , y z*w , x*y*z*w , x z*w , x*y w , x y*w ,
                0       0       0       0         0       0       0       0 
      -----------------------------------------------------------------------
       2 2       2       2   2 2       2   2 2     3     3     3   4
      z w , y*z*w , x*z*w , y w , x*y*w , x w , z*w , y*w , x*w , w )
         0       0       0     0       0     0     0     0     0   0

o31 : Ideal of R[w ]
                  0</pre>
</td></tr>
<tr><td><pre>i32 : B=(map(ring A, ring B1)) B1

              3       2       2     2                 2         2     2     
o32 = ideal (z w , y*z w , x*z w , y z*w , x*y*z*w , x z*w , x*y w , x y*w ,
                0       0       0       0         0       0       0       0 
      -----------------------------------------------------------------------
       2 2       2       2   2 2       2   2 2     3     3     3   4
      z w , y*z*w , x*z*w , y w , x*y*w , x w , z*w , y*w , x*w , w )
         0       0       0     0       0     0     0     0     0   0

o32 : Ideal of R[w ]
                  0</pre>
</td></tr>
</table>
<div>Finallly, the map g1:</div>
<table class="examples"><tr><td><pre>i33 : C1 = symmetricKernel g

              3   3       2       2     2                 2         2   
o33 = ideal (w , z w , y*z w , x*z w , y z*w , x*y*z*w , x z*w , x*y w ,
              0     0       0       0       0         0       0       0 
      -----------------------------------------------------------------------
       2       2 2       2       2   2 2       2   2 2
      x y*w , z w , y*z*w , x*z*w , y w , x*y*w , x w )
           0     0       0       0     0       0     0

o33 : Ideal of R[w ]
                  0</pre>
</td></tr>
<tr><td><pre>i34 : C=(map(ring A, ring C1)) C1

              3   3       2       2     2                 2         2   
o34 = ideal (w , z w , y*z w , x*z w , y z*w , x*y*z*w , x z*w , x*y w ,
              0     0       0       0       0         0       0       0 
      -----------------------------------------------------------------------
       2       2 2       2       2   2 2       2   2 2
      x y*w , z w , y*z*w , x*z*w , y w , x*y*w , x w )
           0     0       0       0     0       0     0

o34 : Ideal of R[w ]
                  0</pre>
</td></tr>
</table>
<div>The following test yields &ldquo;true&rdquo;, as implied by the theorem of Eisenbud, Huneke and Ulrich.</div>
<table class="examples"><tr><td><pre>i35 : A==B

o35 = true</pre>
</td></tr>
</table>
<div>But the following yields &ldquo;false&rdquo;, showing that one must take care in general, which inclusion one uses.</div>
<table class="examples"><tr><td><pre>i36 : A==C

o36 = false</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_rees__Ideal.html" title="compute the defining ideal of the Rees Algebra">reesIdeal</a> -- compute the defining ideal of the Rees Algebra</span></li>
<li><span><a href="_rees__Algebra.html" title="compute the defining ideal of the Rees Algebra">reesAlgebra</a> -- compute the defining ideal of the Rees Algebra</span></li>
<li><span><a href="_symmetric__Kernel.html" title="Compute the Rees ring of the image of a matrix">symmetricKernel</a> -- Compute the Rees ring of the image of a matrix</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>universalEmbedding</tt> :</h2>
<ul><li>universalEmbedding(Ideal)</li>
<li>universalEmbedding(Module)</li>
</ul>
</div>
</div>
</body>
</html>