Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > 7ebd25ac536d248d499a3ce2acda963a > files > 6130

Macaulay2-1.3.1-8.fc15.i686.rpm

<?xml version="1.0" encoding="utf-8" ?>  <!-- for emacs: -*- coding: utf-8 -*- -->
<!-- Apache may like this line in the file .htaccess: AddCharset utf-8 .html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"	 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" >
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head><title>dualize -- The dual of a face or complex.</title>
<link rel="stylesheet" type="text/css" href="../../../../Macaulay2/Style/doc.css"/>
</head>
<body>
<table class="buttons">
  <tr>
    <td><div><a href="_edim.html">next</a> | <a href="_dual__Grading.html">previous</a> | <a href="_edim.html">forward</a> | <a href="_dual__Grading.html">backward</a> | up | <a href="index.html">top</a> | <a href="master.html">index</a> | <a href="toc.html">toc</a> | <a href="http://www.math.uiuc.edu/Macaulay2/">Macaulay2 web site</a></div>

    </td>
  </tr>
</table>
<hr/>
<div><h1>dualize -- The dual of a face or complex.</h1>
<div class="single"><h2>Synopsis</h2>
<ul><li><div class="list"><dl class="element"><dt class="heading">Usage: </dt><dd class="value"><div><tt>dualize(F)</tt><br/><tt>dualize(C)</tt></div>
</dd></dl>
</div>
</li>
<li><div class="single">Inputs:<ul><li><span><tt>F</tt>, <span>a <a href="___Face.html">face</a></span></span></li>
<li><span><tt>C</tt>, <span>an <a href="___Complex.html">embedded complex</a></span></span></li>
<li><span><tt>C</tt>, <span>an <a href="___Co__Complex.html">embedded co-complex</a></span></span></li>
</ul>
</div>
</li>
<li><div class="single">Outputs:<ul><li><span><span>an <a href="___Co__Complex.html">embedded co-complex</a></span></span></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="single"><h2>Description</h2>
<div><p>Returns the dual of a face or a (co)complex. This is in the sense of dual face of Polytopes, so the faces of C have to be faces of a polytope.</p>
<p>The dual (co)complex dC is stored in C.dualComplex=dC and dC.dualComplex=C.</p>
<p>Note that if C is a Stanley-Reisner subcomplex of a simplex then dualize complement C is the isomorphic geometric complex of strata.</p>
<div/>
<table class="examples"><tr><td><pre>i1 : R=QQ[x_0..x_4]

o1 = R

o1 : PolynomialRing</pre>
</td></tr>
<tr><td><pre>i2 : addCokerGrading R

o2 = | -1 -1 -1 -1 |
     | 1  0  0  0  |
     | 0  1  0  0  |
     | 0  0  1  0  |
     | 0  0  0  1  |

              5        4
o2 : Matrix ZZ  &lt;--- ZZ</pre>
</td></tr>
<tr><td><pre>i3 : C=simplex R

o3 = 4: x x x x x  
         0 1 2 3 4

o3 : complex of dim 4 embedded in dim 4 (printing facets)
     equidimensional, simplicial, F-vector {1, 5, 10, 10, 5, 1}, Euler = 0</pre>
</td></tr>
<tr><td><pre>i4 : bC=boundaryOfPolytope C

o4 = 3: x x x x  x x x x  x x x x  x x x x  x x x x  
         0 1 2 3  0 1 2 4  0 1 3 4  0 2 3 4  1 2 3 4

o4 : complex of dim 3 embedded in dim 4 (printing facets)
     equidimensional, simplicial, F-vector {1, 5, 10, 10, 5, 0}, Euler = -1</pre>
</td></tr>
<tr><td><pre>i5 : F=bC.fc_2_0

o5 = x x x
      0 1 2

o5 : face with 3 vertices</pre>
</td></tr>
<tr><td><pre>i6 : coordinates F

o6 = {{-1, -1, -1, -1}, {1, 0, 0, 0}, {0, 1, 0, 0}}

o6 : List</pre>
</td></tr>
<tr><td><pre>i7 : dualize F

o7 = v v
      0 1

o7 : face with 2 vertices</pre>
</td></tr>
<tr><td><pre>i8 : coordinates dualize F

o8 = {{-1, -1, -1, 4}, {-1, -1, 4, -1}}

o8 : List</pre>
</td></tr>
<tr><td><pre>i9 : dbC=dualize bC

o9 = 0: v  v  v  v  v  
         0  1  2  3  4

o9 : co-complex of dim 0 embedded in dim 4 (printing facets)
     equidimensional, simplicial, F-vector {0, 5, 10, 10, 5, 1}, Euler = 1</pre>
</td></tr>
<tr><td><pre>i10 : complement F

o10 = x x
       3 4

o10 : face with 2 vertices</pre>
</td></tr>
<tr><td><pre>i11 : coordinates complement F

o11 = {{0, 0, 1, 0}, {0, 0, 0, 1}}

o11 : List</pre>
</td></tr>
<tr><td><pre>i12 : complement bC

o12 = 0: x  x  x  x  x  
          4  3  2  1  0

o12 : co-complex of dim 0 embedded in dim 4 (printing facets)
      equidimensional, simplicial, F-vector {0, 5, 10, 10, 5, 1}, Euler = 1</pre>
</td></tr>
<tr><td><pre>i13 : dualize complement bC

o13 = 3: v v v v  v v v v  v v v v  v v v v  v v v v  
          1 2 3 4  0 2 3 4  0 1 3 4  0 1 2 4  0 1 2 3

o13 : complex of dim 3 embedded in dim 4 (printing facets)
      equidimensional, simplicial, F-vector {1, 5, 10, 10, 5, 0}, Euler = -1</pre>
</td></tr>
<tr><td><pre>i14 : bC

o14 = 3: x x x x  x x x x  x x x x  x x x x  x x x x  
          0 1 2 3  0 1 2 4  0 1 3 4  0 2 3 4  1 2 3 4

o14 : complex of dim 3 embedded in dim 4 (printing facets)
      equidimensional, simplicial, F-vector {1, 5, 10, 10, 5, 0}, Euler = -1</pre>
</td></tr>
<tr><td><pre>i15 : coordinates dualize complement F

o15 = {{-1, 4, -1, -1}, {4, -1, -1, -1}, {-1, -1, -1, -1}}

o15 : List</pre>
</td></tr>
<tr><td><pre>i16 : coordinates F

o16 = {{-1, -1, -1, -1}, {1, 0, 0, 0}, {0, 1, 0, 0}}

o16 : List</pre>
</td></tr>
</table>
</div>
</div>
<div class="single"><h2>See also</h2>
<ul><li><span><a href="_complement_lp__Face_rp.html" title="Compute the complement face of a simplex.">complement(Face)</a> -- Compute the complement face of a simplex.</span></li>
<li><span><a href="_complement_lp__Complex_rp.html" title="Compute the complement CoComplex.">complement(Complex)</a> -- Compute the complement CoComplex.</span></li>
</ul>
</div>
<div class="waystouse"><h2>Ways to use <tt>dualize</tt> :</h2>
<ul><li>dualize(Complex)</li>
<li>dualize(Face)</li>
</ul>
</div>
</div>
</body>
</html>