Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > c4a762e373a3c52f30947d23bdb1bf7d > files > 14

chrony-1.25-0.2.pre1.fc15.i686.rpm

#######################################################################
#
# This is an example chrony configuration file.  You should copy it to
# /etc/chrony.conf after uncommenting and editing the options that you
# want to enable.  The more obscure options are not included.  Refer
# to the documentation for these.
#
# Copyright 2002 Richard P. Curnow
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of version 2 of the GNU General Public License as
# published by the Free Software Foundation.
# 
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
# 
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# 
#
#######################################################################
### COMMENTS
# Any of the following lines are comments (you have a choice of
# comment start character):
# a comment
% a comment
! a comment
; a comment
#
# Below, the '!' form is used for lines that you might want to
# uncomment and edit to make your own chrony.conf file.
#
#######################################################################
#######################################################################
### SPECIFY YOUR NTP SERVERS
# Most computers using chrony will send measurement requests to one or
# more 'NTP servers'.  You will probably find that your Internet Service
# Provider or company have one or more NTP servers that you can specify.
# Failing that, there are a lot of public NTP servers.  There is a list
# you can access at
# http://www.eecis.udel.edu/~mills/ntp/servers.htm.

! server ntp0.your-isp.com
! server ntp1.your-isp.com
! server ntp.public-server.org
 
# However, for dial-up use you probably want these instead.  The word
# 'offline' means that the server is not visible at boot time.  Use
# chronyc's 'online' command to tell chronyd that these servers have
# become visible after you go on-line.

! server ntp0.your-isp.com offline
! server ntp1.your-isp.com offline
! server ntp.public-server.org offline

# You may want to specify NTP 'peers' instead.  If you run a network
# with a lot of computers and want several computers running chrony to
# have the 'front-line' interface to the public NTP servers, you can
# 'peer' these machines together to increase robustness.

! peer ntp0.my-company.com

# There are other options to the 'server' and 'peer' directives that you
# might want to use.  For example, you can ignore measurements whose
# round-trip-time is too large (indicating that the measurement is
# probably useless, because you don't know which way the measurement
# message got held up.)  Consult the full documentation for details.

#######################################################################
### AVOIDING POTENTIALLY BOGUS CHANGES TO YOUR CLOCK
#
# To avoid changes being made to your computer's gain/loss compensation
# when the measurement history is too erratic, you might want to enable
# one of the following lines.  The first seems good for dial-up (or
# other high-latency connections like slow leased lines), the second
# seems OK for a LAN environment.

! maxupdateskew 100
! maxupdateskew 5

#######################################################################
### FILENAMES ETC
# Chrony likes to keep information about your computer's clock in files.
# The 'driftfile' stores the computer's clock gain/loss rate in parts
# per million.  When chronyd starts, the system clock can be tuned
# immediately so that it doesn't gain or lose any more time.  You
# generally want this, so it is uncommented.

driftfile /etc/chrony.drift

# If you want to use the program called chronyc to configure aspects of
# chronyd's operation once it is running (e.g. tell it the Internet link
# has gone up or down), you need a password.  This is stored in the
# following keys file.  (You also need keys to support authenticated NTP
# exchanges between cooperating machines.)  Again, this option is
# assumed by default.

keyfile /etc/chrony.keys

# Tell chronyd which numbered key in the file is used as the password
# for chronyc. (You can pick any integer up to 2**32-1.  '1' is just a
# default.  Using another value will _NOT_ increase security.)

commandkey 1

# chronyd can save the measurement history for the servers to files when
# it it exits.  This is useful in 2 situations:
#
# 1. On Linux, if you stop chronyd and restart it with '-r' (e.g. after
# an upgrade), the old measurements will still be relevant when chronyd
# is restarted.  This will reduce the time needed to get accurate
# gain/loss measurements, especially with a dial-up link.
#
# 2. Again on Linux, if you use the RTC support and start chronyd with
# '-r -s' on bootup, measurements from the last boot will still be
# useful (the real time clock is used to 'flywheel' chronyd between
# boots).
#
# Enable these two options to use this.

! dumponexit
! dumpdir /var/log/chrony

# chronyd writes its process ID to a file.  If you try to start a second
# copy of chronyd, it will detect that the process named in the file is
# still running and bail out.  If you want to change the path to the PID
# file, uncomment this line and edit it.  The default path is shown.

! pidfile /var/run/chronyd.pid

#######################################################################
### INITIAL CLOCK CORRECTION
# This option is only useful if your NTP servers are visible at boot
# time.  This probably means you are on a LAN.  If so, the following
# option will choose the best-looking of the servers and correct the
# system time to that.  The value '10' means that if the error is less
# than 10 seconds, it will be gradually removed by speeding up or
# slowing down your computer's clock until it is correct.  If the error
# is above 10 seconds, an immediate time jump will be applied to correct
# it.  Some software can get upset if the system clock jumps (especially
# backwards), so be careful!

! initstepslew 10 ntp0.your-company.com ntp1.your-company.com ntp2.your-company.com

#######################################################################
### LOGGING
# If you want to log information about the time measurements chronyd has
# gathered, you might want to enable the following lines.  You probably
# only need this if you really enjoy looking at the logs, you want to
# produce some graphs of your system's timekeeping performance, or you
# need help in debugging a problem.

! logdir /var/log/chrony
! log measurements statistics tracking

# If you have real time clock support enabled (see below), you might want
# this line instead:

! log measurements statistics tracking rtc

#######################################################################
### ACTING AS AN NTP SERVER
# You might want the computer to be an NTP server for other computers.
# e.g.  you might be running chronyd on a dial-up machine that has a LAN
# sitting behind it with several 'satellite' computers on it.
#
# By default, chronyd does not allow any clients to access it.  You need
# to explicitly enable access using 'allow' and 'deny' directives.
#
# e.g. to enable client access from the 192.168.*.* class B subnet,

! allow 192.168/16

# .. but disallow the 192.168.100.* subnet of that,

! deny 192.168.100/24

# You can have as many allow and deny directives as you need.  The order
# is unimportant.

# If you want chronyd to act as an NTP broadcast server, enable and edit
# (and maybe copy) the following line.  This means that a broadcast
# packet is sent to the address 192.168.1.255 every 60 seconds.  The
# address MUST correspond to the broadcast address of one of the network
# interfaces on your machine.  If you have multiple network interfaces,
# add a broadcast line for each.

! broadcast 60 192.168.1.255

# If you want to present your computer's time for others to synchronise
# with, even if you don't seem to be synchronised to any NTP servers
# yourself, enable the following line.  The value 10 may be varied
# between 1 and 15.  You should avoid small values because you will look
# like a real NTP server.  The value 10 means that you appear to be 10
# NTP 'hops' away from an authoritative source (atomic clock, GPS
# receiver, radio clock etc).

! local stratum 10

# Normally, chronyd will keep track of how many times each client
# machine accesses it.  The information can be accessed by the 'clients'
# command of chronyc.  You can disable this facility by uncommenting the
# following line.  This will save a bit of memory if you have many
# clients.

! noclientlog

# The clientlog size is limited to 512KB by default.  If you have many
# clients, especially in many different subnets, you might want to
# increase the limit. 

! clientloglimit 4194304

#######################################################################
### REPORTING BIG CLOCK CHANGES
# Perhaps you want to know if chronyd suddenly detects any large error
# in your computer's clock.  This might indicate a fault or a problem
# with the server(s) you are using, for example.
#
# The next option causes a message to be written to syslog when chronyd
# has to correct an error above 0.5 seconds (you can use any amount you
# like).

! logchange 0.5

# The next option will send email to the named person when chronyd has
# to correct an error above 0.5 seconds.  (If you need to send mail to
# several people, you need to set up a mailing list or sendmail alias
# for them and use the address of that.)

! mailonchange wibble@foobar.org 0.5

#######################################################################
### COMMAND ACCESS
# The program chronyc is used to show the current operation of chronyd
# and to change parts of its configuration whilst it is running.

# Normally, chronyd will only allow connections from chronyc on the same
# machine as itself.  This is for security.  If you have a subnet
# 192.168.*.* and you want to be able to use chronyc from any machine on
# it, you could uncomment the following line.  (Edit this to your own
# situation.)

! cmdallow 192.168/16

# You can add as many 'cmdallow' and 'cmddeny' lines as you like.  The
# syntax and meaning is the same as for 'allow' and 'deny', except that
# 'cmdallow' and 'cmddeny' control access to the chronyd's command port.

# NOTE, even if the host where you run chronyc is granted access, you
# still need a command key set up and you have to know the password to
# put into chronyc to allow you to modify chronyd's parameters.  By
# default all you can do is view information about chronyd's operation.

# Some people have reported that the need the following line to allow
# chronyc to work even on the same machine.  This should not be
# necessary, and the problem is being investigated.  You can leave this
# line enabled, as it's benign otherwise.

cmdallow 127.0.0.1

#######################################################################
### REAL TIME CLOCK
# chronyd can characterise the system's real-time clock.  This is the
# clock that keeps running when the power is turned off, so that the
# machine knows the approximate time when it boots again.  The error at
# a particular epoch and gain/loss rate can be written to a file and
# used later by chronyd when it is started with the '-s' option.
#
# You need to have 'enhanced RTC support' compiled into your Linux
# kernel.  (Note, these options apply only to Linux.)

! rtcfile /etc/chrony.rtc

# Your RTC can be set to keep Universal Coordinated Time (UTC) or local
# time.  (Local time means UTC +/- the effect of your timezone.)  If you
# use UTC, chronyd will function correctly even if the computer is off
# at the epoch when you enter or leave summer time (aka daylight saving
# time).  However, if you dual boot your system with Microsoft Windows,
# that will work better if your RTC maintains local time.  You take your
# pick!

! rtconutc

# By default chronyd assumes that the enhanced RTC device is accessed as
# /dev/rtc.  If it's accessed somewhere else on your system (e.g. you're
# using devfs), uncomment and edit the following line.

! rtcdevice /dev/misc/rtc

#######################################################################
### REAL TIME SCHEDULER
# This directive tells chronyd to use the real-time FIFO scheduler with the
# specified priority (which must be between 0 and 100).  This should result
# in reduced latency.  You don't need it unless you really have a requirement
# for extreme clock stability.  Works only on Linux.  Note that the "-P"
# command-line switch will override this.

! sched_priority 1

#######################################################################
### LOCKING CHRONYD INTO RAM
# This directive tells chronyd to use the mlockall() syscall to lock itself
# into RAM so that it will never be paged out.  This should result in reduced
# latency.  You don't need it unless you really have a requirement
# for extreme clock stability.  Works only on Linux.  Note that the "-m"
# command-line switch will also enable this feature.

! lock_all