Sophie

Sophie

distrib > Fedora > 15 > i386 > by-pkgid > fe643c025788dbb3380e7eef6c1c16b1 > files > 760

hugs98-2006.09-10.fc15.i686.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML
><HEAD
><TITLE
>Quantified types</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK
REL="HOME"
TITLE="The Hugs 98 User's Guide"
HREF="index.html"><LINK
REL="UP"
TITLE="Language extensions supported by Hugs and GHC"
HREF="hugs-ghc.html"><LINK
REL="PREVIOUS"
TITLE="Type class extensions"
HREF="class-extensions.html"><LINK
REL="NEXT"
TITLE="Type annotations in patterns"
HREF="type-annotations.html"><LINK
REL="STYLESHEET"
TYPE="text/css"
HREF="hugs-ug.css"></HEAD
><BODY
CLASS="SECT1"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>The Hugs 98 User's Guide</TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="bottom"
><A
HREF="class-extensions.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
>Chapter 6. Language extensions supported by Hugs and GHC</TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="type-annotations.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECT1"
><H1
CLASS="SECT1"
><A
NAME="QUANTIFIED-TYPES"
>6.3. Quantified types</A
></H1
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="RANK-2-TYPES"
>6.3.1. Rank 2 types</A
></H2
><P
>In Haskell 98, all type signatures are implicitly universally
quantified at the outer level, for example
<PRE
CLASS="PROGRAMLISTING"
>id :: a -&#62; a</PRE
>
Variables bound with a <TT
CLASS="LITERAL"
>let</TT
> or <TT
CLASS="LITERAL"
>where</TT
>
may be polymorphic, as in
<PRE
CLASS="PROGRAMLISTING"
>let f x = x in (f True, f 'a')</PRE
>
but function arguments may not be: Haskell 98 rejects
<PRE
CLASS="PROGRAMLISTING"
>g f = (f True, f 'a')</PRE
>
However, with the <CODE
CLASS="OPTION"
>-98</CODE
>, the function <TT
CLASS="LITERAL"
>g</TT
>
may be given the signature
<PRE
CLASS="PROGRAMLISTING"
>g :: (forall a. a -&#62; a) -&#62; (Bool, Char)</PRE
>
This is called a <I
CLASS="FIRSTTERM"
>rank 2</I
> type, because a function
argument is polymorphic, as indicated by the <TT
CLASS="LITERAL"
>forall</TT
>
quantifier.</P
><P
>Now the function <TT
CLASS="LITERAL"
>g</TT
> may be applied to expression whose
generalized type is at least as general as that declared.
In this particular example the choice is limited: we can write
<PRE
CLASS="SCREEN"
>g id
g undefined
g (const undefined)</PRE
>
or various equivalent forms
<PRE
CLASS="SCREEN"
>g (\x -&gt; x)
g (id . id . id)
g (id id id)</PRE
>
There are a number of restrictions on such functions:
<P
></P
><UL
><LI
><P
>Functions that take polymorphic arguments must be given an explicit
type signature.</P
></LI
><LI
><P
>In the definition of the function, polymorphic arguments must be matched,
and can only be matched by a variable or wildcard (<TT
CLASS="LITERAL"
>_</TT
>)
pattern.</P
></LI
><LI
><P
>When such functions are used, the polymorphic arguments must be supplied:
you can't just use <TT
CLASS="LITERAL"
>g</TT
> on its own.</P
></LI
></UL
>
GHC, which supports arbitrary rank polymorphism,
is able to relax some of these restrictions.</P
><P
>Hugs reports an error if a type variable in a <TT
CLASS="LITERAL"
>forall</TT
>
is unused in the enclosed type.</P
><P
>An important application of rank 2 types is the primitive
<PRE
CLASS="PROGRAMLISTING"
>runST :: (forall s. ST s a) -&#62; a</PRE
>
in the module <TT
CLASS="LITERAL"
>Control.Monad.ST</TT
>.
Here the type signature ensures that objects created by the state monad,
whose types all refer to the parameter <TT
CLASS="LITERAL"
>s</TT
>,
are unused outside the application of <CODE
CLASS="FUNCTION"
>runST</CODE
>.
Thus to use this module you need the <CODE
CLASS="OPTION"
>-98</CODE
> option.
Also, from the restrictions above,
it follows that <CODE
CLASS="FUNCTION"
>runST</CODE
> must always
be applied to its polymorphic argument.
Hugs does not permit either of
<PRE
CLASS="PROGRAMLISTING"
>myRunST :: (forall s. ST s a) -&#62; a
myRunST = runST

f x = runST $ do
      ...
      return y</PRE
>
(though GHC does).
Instead, you can write
<PRE
CLASS="PROGRAMLISTING"
>myRunST :: (forall s. ST s a) -&#62; a
myRunST x = runST x

f x = runST (do
      ...
      return y)</PRE
></P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="POLYMORPHIC-COMPONENTS"
>6.3.2. Polymorphic components</A
></H2
><P
>Similarly, components of a constructor may be polymorphic:
<PRE
CLASS="PROGRAMLISTING"
>newtype List a = MkList (forall r. r -&#62; (a -&#62; r -&#62; r) -&#62; r)
newtype NatTrans f g = MkNT (forall a. f a -&#62; g a)
data MonadT m = MkMonad {
                my_return :: forall a. a -&#62; m a,
                my_bind :: forall a b. m a -&#62; (a -&#62; m b) -&#62; m b
              }</PRE
>
So that the constructors have rank 2 types:
<PRE
CLASS="PROGRAMLISTING"
>MkList :: (forall r. r -&#62; (a -&#62; r -&#62; r) -&#62; r) -&#62; List a
MkNT :: (forall a. f a -&#62; g a) -&#62; NatTrans f g
MkMonad :: (forall a. a -&#62; m a) -&#62;
           (forall a b. m a -&#62; (a -&#62; m b) -&#62; m b) -&#62; MonadT m</PRE
>
As with functions having rank 2 types, such a constructor must be supplied
with any polymorphic arguments when it is used in an expression.</P
><P
>The record update syntax cannot be used with records containing
polymorphic components.</P
></DIV
><DIV
CLASS="SECT2"
><H2
CLASS="SECT2"
><A
NAME="EXISTENTIAL-QUANTIFICATION"
>6.3.3. Existential quantification</A
></H2
><P
>It is also possible to have existentially quantified constructors,
somewhat confusingly also specified with <TT
CLASS="LITERAL"
>forall</TT
>,
but before the constructor, as in
<PRE
CLASS="PROGRAMLISTING"
>data Accum a = forall s. MkAccum s (a -&#62; s -&#62; s) (s -&#62; a)</PRE
>
This type describes objects with a state of an abstract type
<TT
CLASS="LITERAL"
>s</TT
>,
together with functions to update and query the state.
The <TT
CLASS="LITERAL"
>forall</TT
> is somewhat motivated by the polymorphic
type of the constructor <TT
CLASS="LITERAL"
>MkAccum</TT
>, which is
<PRE
CLASS="SCREEN"
>s -&#62; (a -&#62; s -&#62; s) -&#62; (s -&#62; a) -&#62; Accum a</PRE
>
because it must be able to operate on any state.</P
><P
>Some sample values of the <TT
CLASS="LITERAL"
>Accum</TT
> type are:
<PRE
CLASS="PROGRAMLISTING"
>adder = MkAccum 0 (+) id
averager = MkAccum (0,0)
                   (\x (t,n) -&#62; (t+x,n+1))
                   (uncurry (/))</PRE
>
Unfortunately, existentially quantified constructors may not contain
named fields.
You also can't use <TT
CLASS="LITERAL"
>deriving</TT
> with existentially quantified
types.</P
><P
>When we match against an existentially quantified constructor, as in
<PRE
CLASS="PROGRAMLISTING"
>runAccum (MkAccum s add get) [] = ??</PRE
>
we do not know the type of <TT
CLASS="LITERAL"
>s</TT
>,
only that <TT
CLASS="LITERAL"
>add</TT
> and <TT
CLASS="LITERAL"
>get</TT
>
take arguments of the same type as <TT
CLASS="LITERAL"
>s</TT
>.
So our options are limited.  One possibility is
<PRE
CLASS="PROGRAMLISTING"
>runAccum (MkAccum s add get) [] = get s</PRE
>
Similarly we can also write
<PRE
CLASS="PROGRAMLISTING"
>runAccum (MkAccum s add get) (x:xs) =
    runAccum (MkAccum (add x v) add get) xs</PRE
></P
><P
>This particular application of existentials &ndash; modelling objects &ndash;
may also be done with a Haskell 98 recursive type:
<PRE
CLASS="PROGRAMLISTING"
>data Accum a = MkAccum { add_value :: a -&#62; Accum a, get_value :: a}</PRE
>
but other applications do require existentials.</P
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="class-extensions.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="index.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="type-annotations.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Type class extensions</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="hugs-ghc.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Type annotations in patterns</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>