Sophie

Sophie

distrib > Fedora > 17 > i386 > by-pkgid > b6f82ea76d5134c5709ffcc9dc9e29c5 > files > 246

Django-doc-1.4.5-1.fc17.noarch.rpm

=============================
User authentication in Django
=============================

.. module:: django.contrib.auth
   :synopsis: Django's authentication framework.

Django comes with a user authentication system. It handles user accounts,
groups, permissions and cookie-based user sessions. This document explains how
things work.

Overview
========

The auth system consists of:

* Users
* Permissions: Binary (yes/no) flags designating whether a user may perform
  a certain task.
* Groups: A generic way of applying labels and permissions to more than one
  user.

Installation
============

Authentication support is bundled as a Django application in
``django.contrib.auth``. To install it, do the following:

1. Put ``'django.contrib.auth'`` and ``'django.contrib.contenttypes'`` in
   your :setting:`INSTALLED_APPS` setting.
   (The :class:`~django.contrib.auth.models.Permission` model in
   :mod:`django.contrib.auth` depends on :mod:`django.contrib.contenttypes`.)
2. Run the command ``manage.py syncdb``.

Note that the default :file:`settings.py` file created by
:djadmin:`django-admin.py startproject <startproject>` includes
``'django.contrib.auth'`` and ``'django.contrib.contenttypes'`` in
:setting:`INSTALLED_APPS` for convenience.  If your :setting:`INSTALLED_APPS`
already contains these apps, feel free to run :djadmin:`manage.py syncdb
<syncdb>` again; you can run that command as many times as you'd like, and each
time it'll only install what's needed.

The :djadmin:`syncdb` command creates the necessary database tables, creates
permission objects for all installed apps that need 'em, and prompts you to
create a superuser account the first time you run it.

Once you've taken those steps, that's it.

Users
=====

.. class:: models.User

API reference
-------------

Fields
~~~~~~

.. class:: models.User

    :class:`~django.contrib.auth.models.User` objects have the following
    fields:

    .. attribute:: models.User.username

        Required. 30 characters or fewer. Alphanumeric characters only
        (letters, digits and underscores).

        .. versionchanged:: 1.2
           Usernames may now contain ``@``, ``+``, ``.`` and ``-`` characters.

    .. attribute:: models.User.first_name

        Optional. 30 characters or fewer.

    .. attribute:: models.User.last_name

        Optional. 30 characters or fewer.

    .. attribute:: models.User.email

        Optional. Email address.

    .. attribute:: models.User.password

        Required. A hash of, and metadata about, the password. (Django doesn't
        store the raw password.) Raw passwords can be arbitrarily long and can
        contain any character. See the "Passwords" section below.

    .. attribute:: models.User.is_staff

        Boolean. Designates whether this user can access the admin site.

    .. attribute:: models.User.is_active

        Boolean. Designates whether this user account should be considered
        active. We recommend that you set this flag to ``False`` instead of
        deleting accounts; that way, if your applications have any foreign keys
        to users, the foreign keys won't break.

        This doesn't necessarily control whether or not the user can log in.
        Authentication backends aren't required to check for the ``is_active``
        flag, and the default backends do not. If you want to reject a login
        based on ``is_active`` being ``False``, it's up to you to check that in
        your own login view or a custom authentication backend. However, the
        :class:`~django.contrib.auth.forms.AuthenticationForm` used by the
        :func:`~django.contrib.auth.views.login` view (which is the default)
        *does* perform this check, as do the permission-checking methods such
        as :meth:`~models.User.has_perm` and the authentication in the Django
        admin. All of those functions/methods will return ``False`` for
        inactive users.

    .. attribute:: models.User.is_superuser

        Boolean. Designates that this user has all permissions without
        explicitly assigning them.

    .. attribute:: models.User.last_login

        A datetime of the user's last login. Is set to the current date/time by
        default.

    .. attribute:: models.User.date_joined

        A datetime designating when the account was created. Is set to the
        current date/time by default when the account is created.

Methods
~~~~~~~

.. class:: models.User

    :class:`~django.contrib.auth.models.User` objects have two many-to-many
    fields: ``groups`` and ``user_permissions``.
    :class:`~django.contrib.auth.models.User` objects can access their related
    objects in the same way as any other :doc:`Django model
    </topics/db/models>`:

    .. code-block:: python

        myuser.groups = [group_list]
        myuser.groups.add(group, group, ...)
        myuser.groups.remove(group, group, ...)
        myuser.groups.clear()
        myuser.user_permissions = [permission_list]
        myuser.user_permissions.add(permission, permission, ...)
        myuser.user_permissions.remove(permission, permission, ...)
        myuser.user_permissions.clear()

    In addition to those automatic API methods,
    :class:`~django.contrib.auth.models.User` objects have the following custom
    methods:

    .. method:: models.User.is_anonymous()

        Always returns ``False``. This is a way of differentiating
        :class:`~django.contrib.auth.models.User` and
        :class:`~django.contrib.auth.models.AnonymousUser` objects.
        Generally, you should prefer using
        :meth:`~django.contrib.auth.models.User.is_authenticated()` to this
        method.

    .. method:: models.User.is_authenticated()

        Always returns ``True``. This is a way to tell if the user has been
        authenticated. This does not imply any permissions, and doesn't check
        if the user is active - it only indicates that the user has provided a
        valid username and password.

    .. method:: models.User.get_full_name()

        Returns the :attr:`~django.contrib.auth.models.User.first_name` plus
        the :attr:`~django.contrib.auth.models.User.last_name`, with a space in
        between.

    .. method:: models.User.set_password(raw_password)

        Sets the user's password to the given raw string, taking care of the
        password hashing. Doesn't save the
        :class:`~django.contrib.auth.models.User` object.

    .. method:: models.User.check_password(raw_password)

        Returns ``True`` if the given raw string is the correct password for
        the user. (This takes care of the password hashing in making the
        comparison.)

    .. method:: models.User.set_unusable_password()

        Marks the user as having no password set.  This isn't the same as
        having a blank string for a password.
        :meth:`~django.contrib.auth.models.User.check_password()` for this user
        will never return ``True``. Doesn't save the
        :class:`~django.contrib.auth.models.User` object.

        You may need this if authentication for your application takes place
        against an existing external source such as an LDAP directory.

    .. method:: models.User.has_usable_password()

        Returns ``False`` if
        :meth:`~django.contrib.auth.models.User.set_unusable_password()` has
        been called for this user.

    .. method:: models.User.get_group_permissions(obj=None)

        Returns a set of permission strings that the user has, through his/her
        groups.

        .. versionadded:: 1.2

        If ``obj`` is passed in, only returns the group permissions for
        this specific object.

    .. method:: models.User.get_all_permissions(obj=None)

        Returns a set of permission strings that the user has, both through
        group and user permissions.

        .. versionadded:: 1.2

        If ``obj`` is passed in, only returns the permissions for this
        specific object.

    .. method:: models.User.has_perm(perm, obj=None)

        Returns ``True`` if the user has the specified permission, where perm is
        in the format ``"<app label>.<permission codename>"``. (see
        `permissions`_ section below). If the user is inactive, this method will
        always return ``False``.

        .. versionadded:: 1.2

        If ``obj`` is passed in, this method won't check for a permission for
        the model, but for this specific object.

    .. method:: models.User.has_perms(perm_list, obj=None)

        Returns ``True`` if the user has each of the specified permissions,
        where each perm is in the format
        ``"<app label>.<permission codename>"``. If the user is inactive,
        this method will always return ``False``.

        .. versionadded:: 1.2

        If ``obj`` is passed in, this method won't check for permissions for
        the model, but for the specific object.

    .. method:: models.User.has_module_perms(package_name)

        Returns ``True`` if the user has any permissions in the given package
        (the Django app label). If the user is inactive, this method will
        always return ``False``.

    .. method:: models.User.email_user(subject, message, from_email=None)

        Sends an email to the user. If
        :attr:`~django.contrib.auth.models.User.from_email` is ``None``, Django
        uses the :setting:`DEFAULT_FROM_EMAIL`.

    .. method:: models.User.get_profile()

        Returns a site-specific profile for this user. Raises
        :exc:`django.contrib.auth.models.SiteProfileNotAvailable` if the
        current site doesn't allow profiles, or
        :exc:`django.core.exceptions.ObjectDoesNotExist` if the user does not
        have a profile. For information on how to define a site-specific user
        profile, see the section on `storing additional user information`_ below.

.. _storing additional user information: #storing-additional-information-about-users

Manager functions
~~~~~~~~~~~~~~~~~

.. class:: models.UserManager

    The :class:`~django.contrib.auth.models.User` model has a custom manager
    that has the following helper functions:

    .. method:: models.UserManager.create_user(username, email=None, password=None)

        .. versionchanged:: 1.4
           The ``email`` parameter was made optional. The username
           parameter is now checked for emptiness and raises a
           :exc:`ValueError` in case of a negative result.

        Creates, saves and returns a :class:`~django.contrib.auth.models.User`.

        The :attr:`~django.contrib.auth.models.User.username` and
        :attr:`~django.contrib.auth.models.User.password` are set as given. The
        domain portion of :attr:`~django.contrib.auth.models.User.email` is
        automatically converted to lowercase, and the returned
        :class:`~django.contrib.auth.models.User` object will have
        :attr:`~models.User.is_active` set to ``True``.

        If no password is provided,
        :meth:`~django.contrib.auth.models.User.set_unusable_password()` will
        be called.

        See `Creating users`_ for example usage.

    .. method:: models.UserManager.make_random_password(length=10, allowed_chars='abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789')

        Returns a random password with the given length and given string of
        allowed characters. (Note that the default value of ``allowed_chars``
        doesn't contain letters that can cause user confusion, including:

        * ``i``, ``l``, ``I``, and ``1`` (lowercase letter i, lowercase
          letter L, uppercase letter i, and the number one)
        * ``o``, ``O``, and ``0`` (uppercase letter o, lowercase letter o,
          and zero)

Basic usage
-----------

.. _topics-auth-creating-users:

Creating users
~~~~~~~~~~~~~~

The most basic way to create users is to use the
:meth:`~django.contrib.auth.models.UserManager.create_user` helper function
that comes with Django::

    >>> from django.contrib.auth.models import User
    >>> user = User.objects.create_user('john', 'lennon@thebeatles.com', 'johnpassword')

    # At this point, user is a User object that has already been saved
    # to the database. You can continue to change its attributes
    # if you want to change other fields.
    >>> user.is_staff = True
    >>> user.save()

You can also create users using the Django admin site. Assuming you've enabled
the admin site and hooked it to the URL ``/admin/``, the "Add user" page is at
``/admin/auth/user/add/``. You should also see a link to "Users" in the "Auth"
section of the main admin index page. The "Add user" admin page is different
than standard admin pages in that it requires you to choose a username and
password before allowing you to edit the rest of the user's fields.

Also note: if you want your own user account to be able to create users using
the Django admin site, you'll need to give yourself permission to add users
*and* change users (i.e., the "Add user" and "Change user" permissions). If
your account has permission to add users but not to change them, you won't be
able to add users. Why? Because if you have permission to add users, you have
the power to create superusers, which can then, in turn, change other users. So
Django requires add *and* change permissions as a slight security measure.

Changing passwords
~~~~~~~~~~~~~~~~~~

.. versionadded:: 1.2
   The ``manage.py changepassword`` command was added.

:djadmin:`manage.py changepassword *username* <changepassword>` offers a method
of changing a User's password from the command line. It prompts you to
change the password of a given user which you must enter twice. If
they both match, the new password will be changed immediately. If you
do not supply a user, the command will attempt to change the password
whose username matches the current user.

You can also change a password programmatically, using
:meth:`~django.contrib.auth.models.User.set_password()`:

.. code-block:: python

    >>> from django.contrib.auth.models import User
    >>> u = User.objects.get(username__exact='john')
    >>> u.set_password('new password')
    >>> u.save()

Don't set the :attr:`~django.contrib.auth.models.User.password` attribute
directly unless you know what you're doing. This is explained in the next
section.

.. _auth_password_storage:

How Django stores passwords
---------------------------

.. versionadded:: 1.4
   Django 1.4 introduces a new flexible password storage system and uses
   PBKDF2 by default. Previous versions of Django used SHA1, and other
   algorithms couldn't be chosen.

The :attr:`~django.contrib.auth.models.User.password` attribute of a
:class:`~django.contrib.auth.models.User` object is a string in this format::

    algorithm$hash

That's a storage algorithm, and hash, separated by the dollar-sign
character. The algorithm is one of a number of one way hashing or password
storage algorithms Django can use; see below. The hash is the result of the one-
way function.

By default, Django uses the PBKDF2_ algorithm with a SHA256 hash, a
password stretching mechanism recommended by NIST_. This should be
sufficient for most users: it's quite secure, requiring massive
amounts of computing time to break.

However, depending on your requirements, you may choose a different
algorithm, or even use a custom algorithm to match your specific
security situation. Again, most users shouldn't need to do this -- if
you're not sure, you probably don't.  If you do, please read on:

Django chooses the an algorithm by consulting the :setting:`PASSWORD_HASHERS`
setting. This is a list of hashing algorithm classes that this Django
installation supports. The first entry in this list (that is,
``settings.PASSWORD_HASHERS[0]``) will be used to store passwords, and all the
other entries are valid hashers that can be used to check existing passwords.
This means that if you want to use a different algorithm, you'll need to modify
:setting:`PASSWORD_HASHERS` to list your prefered algorithm first in the list.

The default for :setting:`PASSWORD_HASHERS` is::

    PASSWORD_HASHERS = (
        'django.contrib.auth.hashers.PBKDF2PasswordHasher',
        'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
        'django.contrib.auth.hashers.BCryptPasswordHasher',
        'django.contrib.auth.hashers.SHA1PasswordHasher',
        'django.contrib.auth.hashers.MD5PasswordHasher',
        'django.contrib.auth.hashers.CryptPasswordHasher',
    )

This means that Django will use PBKDF2_ to store all passwords, but will support
checking passwords stored with PBKDF2SHA1, bcrypt_, SHA1_, etc. The next few
sections describe a couple of common ways advanced users may want to modify this
setting.

.. _bcrypt_usage:

Using bcrypt with Django
~~~~~~~~~~~~~~~~~~~~~~~~

Bcrypt_ is a popular password storage algorithm that's specifically designed
for long-term password storage. It's not the default used by Django since it
requires the use of third-party libraries, but since many people may want to
use it Django supports bcrypt with minimal effort.

To use Bcrypt as your default storage algorithm, do the following:

1. Install the `py-bcrypt`_ library (probably by running ``sudo pip install
   py-bcrypt``, or downloading the library and installing it with ``python
   setup.py install``).

2. Modify :setting:`PASSWORD_HASHERS` to list ``BCryptPasswordHasher``
   first. That is, in your settings file, you'd put::

        PASSWORD_HASHERS = (
            'django.contrib.auth.hashers.BCryptPasswordHasher',
            'django.contrib.auth.hashers.PBKDF2PasswordHasher',
            'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
            'django.contrib.auth.hashers.SHA1PasswordHasher',
            'django.contrib.auth.hashers.MD5PasswordHasher',
            'django.contrib.auth.hashers.CryptPasswordHasher',
        )

   (You need to keep the other entries in this list, or else Django won't
   be able to upgrade passwords; see below).

That's it -- now your Django install will use Bcrypt as the default storage
algorithm.

.. admonition:: Other bcrypt implementations

   There are several other implementations that allow bcrypt to be
   used with Django. Django's bcrypt support is NOT directly
   compatible with these. To upgrade, you will need to modify the
   hashes in your database to be in the form `bcrypt$(raw bcrypt
   output)`. For example:
   `bcrypt$$2a$12$NT0I31Sa7ihGEWpka9ASYrEFkhuTNeBQ2xfZskIiiJeyFXhRgS.Sy`.

Increasing the work factor
~~~~~~~~~~~~~~~~~~~~~~~~~~

The PDKDF2 and bcrypt algorithms use a number of iterations or rounds of
hashing. This deliberately slows down attackers, making attacks against hashed
passwords harder. However, as computing power increases, the number of
iterations needs to be increased. We've chosen a reasonable default (and will
increase it with each release of Django), but you may wish to tune it up or
down, depending on your security needs and available processing power. To do so,
you'll subclass the appropriate algorithm and override the ``iterations``
parameters. For example, to increase the number of iterations used by the
default PDKDF2 algorithm:

1. Create a subclass of ``django.contrib.auth.hashers.PBKDF2PasswordHasher``::

        from django.contrib.auth.hashers import PBKDF2PasswordHasher

        class MyPBKDF2PasswordHasher(PBKDF2PasswordHasher):
            """
            A subclass of PBKDF2PasswordHasher that uses 100 times more iterations.
            """
            iterations = PBKDF2PasswordHasher.iterations * 100

   Save this somewhere in your project. For example, you might put this in
   a file like ``myproject/hashers.py``.

2. Add your new hasher as the first entry in :setting:`PASSWORD_HASHERS`::

        PASSWORD_HASHERS = (
            'myproject.hashers.MyPBKDF2PasswordHasher',
            'django.contrib.auth.hashers.PBKDF2PasswordHasher',
            'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
            'django.contrib.auth.hashers.BCryptPasswordHasher',
            'django.contrib.auth.hashers.SHA1PasswordHasher',
            'django.contrib.auth.hashers.MD5PasswordHasher',
            'django.contrib.auth.hashers.CryptPasswordHasher',
        )


That's it -- now your Django install will use more iterations when it
stores passwords using PBKDF2.

Password upgrading
~~~~~~~~~~~~~~~~~~

When users log in, if their passwords are stored with anything other than
the preferred algorithm, Django will automatically upgrade the algorithm
to the preferred one. This means that old installs of Django will get
automatically more secure as users log in, and it also means that you
can switch to new (and better) storage algorithms as they get invented.

However, Django can only upgrade passwords that use algorithms mentioned in
:setting:`PASSWORD_HASHERS`, so as you upgrade to new systems you should make
sure never to *remove* entries from this list. If you do, users using un-
mentioned algorithms won't be able to upgrade.

.. _sha1: http://en.wikipedia.org/wiki/SHA1
.. _pbkdf2: http://en.wikipedia.org/wiki/PBKDF2
.. _nist: http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
.. _bcrypt: http://en.wikipedia.org/wiki/Bcrypt
.. _py-bcrypt: http://pypi.python.org/pypi/py-bcrypt/

Anonymous users
---------------

.. class:: models.AnonymousUser

    :class:`django.contrib.auth.models.AnonymousUser` is a class that
    implements the :class:`django.contrib.auth.models.User` interface, with
    these differences:

    * :attr:`~django.contrib.auth.models.User.id` is always ``None``.
    * :attr:`~django.contrib.auth.models.User.is_staff` and
      :attr:`~django.contrib.auth.models.User.is_superuser` are always
      ``False``.
    * :attr:`~django.contrib.auth.models.User.is_active` is always ``False``.
    * :attr:`~django.contrib.auth.models.User.groups` and
      :attr:`~django.contrib.auth.models.User.user_permissions` are always
      empty.
    * :meth:`~django.contrib.auth.models.User.is_anonymous()` returns ``True``
      instead of ``False``.
    * :meth:`~django.contrib.auth.models.User.is_authenticated()` returns
      ``False`` instead of ``True``.
    * :meth:`~django.contrib.auth.models.User.set_password()`,
      :meth:`~django.contrib.auth.models.User.check_password()`,
      :meth:`~django.contrib.auth.models.User.save()`,
      :meth:`~django.contrib.auth.models.User.delete()`,
      :meth:`~django.contrib.auth.models.User.set_groups()` and
      :meth:`~django.contrib.auth.models.User.set_permissions()` raise
      :exc:`NotImplementedError`.

In practice, you probably won't need to use
:class:`~django.contrib.auth.models.AnonymousUser` objects on your own, but
they're used by Web requests, as explained in the next section.

.. _topics-auth-creating-superusers:

Creating superusers
-------------------

:djadmin:`manage.py syncdb <syncdb>` prompts you to create a superuser the
first time you run it after adding ``'django.contrib.auth'`` to your
:setting:`INSTALLED_APPS`. If you need to create a superuser at a later date,
you can use a command line utility::

    manage.py createsuperuser --username=joe --email=joe@example.com

You will be prompted for a password. After you enter one, the user will be
created immediately. If you leave off the :djadminopt:`--username` or the
:djadminopt:`--email` options, it will prompt you for those values.

If you're using an older release of Django, the old way of creating a superuser
on the command line still works::

    python /path/to/django/contrib/auth/create_superuser.py

...where :file:`/path/to` is the path to the Django codebase on your
filesystem. The ``manage.py`` command is preferred because it figures out the
correct path and environment for you.

.. _auth-profiles:

Storing additional information about users
------------------------------------------

If you'd like to store additional information related to your users, Django
provides a method to specify a site-specific related model -- termed a "user
profile" -- for this purpose.

To make use of this feature, define a model with fields for the
additional information you'd like to store, or additional methods
you'd like to have available, and also add a
:class:`~django.db.models.Field.OneToOneField` named ``user`` from your model
to the :class:`~django.contrib.auth.models.User` model. This will ensure only
one instance of your model can be created for each
:class:`~django.contrib.auth.models.User`. For example::

    from django.contrib.auth.models import User

    class UserProfile(models.Model):
        # This field is required.
        user = models.OneToOneField(User)

        # Other fields here
        accepted_eula = models.BooleanField()
        favorite_animal = models.CharField(max_length=20, default="Dragons.")


To indicate that this model is the user profile model for a given site, fill in
the setting :setting:`AUTH_PROFILE_MODULE` with a string consisting of the
following items, separated by a dot:

1. The name of the application (case sensitive) in which the user
   profile model is defined (in other words, the
   name which was passed to :djadmin:`manage.py startapp <startapp>` to create
   the application).

2. The name of the model (not case sensitive) class.

For example, if the profile model was a class named ``UserProfile`` and was
defined inside an application named ``accounts``, the appropriate setting would
be::

    AUTH_PROFILE_MODULE = 'accounts.UserProfile'

When a user profile model has been defined and specified in this manner, each
:class:`~django.contrib.auth.models.User` object will have a method --
:class:`~django.contrib.auth.models.User.get_profile()` -- which returns the
instance of the user profile model associated with that
:class:`~django.contrib.auth.models.User`.

The method :class:`~django.contrib.auth.models.User.get_profile()`
does not create a profile if one does not exist. You need to register a handler
for the User model's :attr:`django.db.models.signals.post_save` signal and, in
the handler, if ``created`` is ``True``, create the associated user profile::

    # in models.py

    from django.contrib.auth.models import User
    from django.db.models.signals import post_save

    # definition of UserProfile from above
    # ...

    def create_user_profile(sender, instance, created, **kwargs):
        if created:
            UserProfile.objects.create(user=instance)

    post_save.connect(create_user_profile, sender=User)

.. seealso:: :doc:`/topics/signals` for more information on Django's signal
    dispatcher.

Adding UserProfile fields to the admin
--------------------------------------

To add the UserProfile fields to the user page in the admin, define an
:class:`~django.contrib.admin.InlineModelAdmin` (for this example, we'll use a
:class:`~django.contrib.admin.StackedInline`) in your app's ``admin.py`` and
add it to a ``UserAdmin`` class which is registered with the
:class:`~django.contrib.auth.models.User` class::

    from django.contrib import admin
    from django.contrib.auth.admin import UserAdmin
    from django.contrib.auth.models import User

    from my_user_profile_app.models import UserProfile

    # Define an inline admin descriptor for UserProfile model
    # which acts a bit like a singleton
    class UserProfileInline(admin.StackedInline):
        model = UserProfile
        can_delete = False
        verbose_name_plural = 'profile'

    # Define a new User admin
    class UserAdmin(UserAdmin):
        inlines = (UserProfileInline, )

    # Re-register UserAdmin
    admin.site.unregister(User)
    admin.site.register(User, UserAdmin)

Authentication in Web requests
==============================

Until now, this document has dealt with the low-level APIs for manipulating
authentication-related objects. On a higher level, Django can hook this
authentication framework into its system of
:class:`request objects <django.http.HttpRequest>`.

First, install the
:class:`~django.contrib.sessions.middleware.SessionMiddleware` and
:class:`~django.contrib.auth.middleware.AuthenticationMiddleware`
middlewares by adding them to your :setting:`MIDDLEWARE_CLASSES` setting. See
the :doc:`session documentation </topics/http/sessions>` for more information.

Once you have those middlewares installed, you'll be able to access
:attr:`request.user <django.http.HttpRequest.user>` in views.
:attr:`request.user <django.http.HttpRequest.user>` will give you a
:class:`~django.contrib.auth.models.User` object representing the currently
logged-in user. If a user isn't currently logged in,
:attr:`request.user <django.http.HttpRequest.user>` will be set to an instance
of :class:`~django.contrib.auth.models.AnonymousUser` (see the previous
section). You can tell them apart with
:meth:`~django.contrib.auth.models.User.is_authenticated()`, like so::

    if request.user.is_authenticated():
        # Do something for authenticated users.
    else:
        # Do something for anonymous users.

.. _how-to-log-a-user-in:

How to log a user in
--------------------

Django provides two functions in :mod:`django.contrib.auth`:
:func:`~django.contrib.auth.authenticate()` and
:func:`~django.contrib.auth.login()`.

.. function:: authenticate()

    To authenticate a given username and password, use
    :func:`~django.contrib.auth.authenticate()`. It takes two keyword
    arguments, ``username`` and ``password``, and it returns a
    :class:`~django.contrib.auth.models.User` object if the password is valid
    for the given username. If the password is invalid,
    :func:`~django.contrib.auth.authenticate()` returns ``None``. Example::

        from django.contrib.auth import authenticate
        user = authenticate(username='john', password='secret')
        if user is not None:
            if user.is_active:
                print "You provided a correct username and password!"
            else:
                print "Your account has been disabled!"
        else:
            print "Your username and password were incorrect."

.. function:: login()

    To log a user in, in a view, use :func:`~django.contrib.auth.login()`. It
    takes an :class:`~django.http.HttpRequest` object and a
    :class:`~django.contrib.auth.models.User` object.
    :func:`~django.contrib.auth.login()` saves the user's ID in the session,
    using Django's session framework, so, as mentioned above, you'll need to
    make sure to have the session middleware installed.

    Note that data set during the anonymous session is retained when the user
    logs in.

    This example shows how you might use both
    :func:`~django.contrib.auth.authenticate()` and
    :func:`~django.contrib.auth.login()`::

        from django.contrib.auth import authenticate, login

        def my_view(request):
            username = request.POST['username']
            password = request.POST['password']
            user = authenticate(username=username, password=password)
            if user is not None:
                if user.is_active:
                    login(request, user)
                    # Redirect to a success page.
                else:
                    # Return a 'disabled account' error message
            else:
                # Return an 'invalid login' error message.

.. admonition:: Calling ``authenticate()`` first

    When you're manually logging a user in, you *must* call
    :func:`~django.contrib.auth.authenticate()` before you call
    :func:`~django.contrib.auth.login()`.
    :func:`~django.contrib.auth.authenticate()`
    sets an attribute on the :class:`~django.contrib.auth.models.User` noting
    which authentication backend successfully authenticated that user (see the
    `backends documentation`_ for details), and this information is needed
    later during the login process.

.. _backends documentation: #other-authentication-sources

Manually managing a user's password
-----------------------------------

.. currentmodule:: django.contrib.auth.hashers

.. versionadded:: 1.4
    The :mod:`django.contrib.auth.hashers` module provides a set of functions
    to create and validate hashed password. You can use them independently
    from the ``User`` model.

.. function:: check_password(password, encoded)

    .. versionadded:: 1.4

    If you'd like to manually authenticate a user by comparing a plain-text
    password to the hashed password in the database, use the convenience
    function :func:`django.contrib.auth.hashers.check_password`. It takes two
    arguments: the plain-text password to check, and the full value of a
    user's ``password`` field in the database to check against, and returns
    ``True`` if they match, ``False`` otherwise.

.. function:: make_password(password[, salt, hashers])

    .. versionadded:: 1.4

    Creates a hashed password in the format used by this application. It takes
    one mandatory argument: the password in plain-text. Optionally, you can
    provide a salt and a hashing algorithm to use, if you don't want to use the
    defaults (first entry of ``PASSWORD_HASHERS`` setting).
    Currently supported algorithms are: ``'pbkdf2_sha256'``, ``'pbkdf2_sha1'``,
    ``'bcrypt'`` (see :ref:`bcrypt_usage`), ``'sha1'``, ``'md5'``,
    ``'unsalted_md5'`` (only for backward compatibility) and ``'crypt'``
    if you have the ``crypt`` library installed. If the password argument is
    ``None``, an unusable password is returned (a one that will be never
    accepted by :func:`django.contrib.auth.hashers.check_password`).

.. function:: is_password_usable(encoded_password)

   .. versionadded:: 1.4

   Checks if the given string is a hashed password that has a chance
   of being verified against :func:`django.contrib.auth.hashers.check_password`.


How to log a user out
---------------------

.. currentmodule:: django.contrib.auth

.. function:: logout()

    To log out a user who has been logged in via
    :func:`django.contrib.auth.login()`, use
    :func:`django.contrib.auth.logout()` within your view. It takes an
    :class:`~django.http.HttpRequest` object and has no return value.
    Example::

        from django.contrib.auth import logout

        def logout_view(request):
            logout(request)
            # Redirect to a success page.

    Note that :func:`~django.contrib.auth.logout()` doesn't throw any errors if
    the user wasn't logged in.

    When you call :func:`~django.contrib.auth.logout()`, the session data for
    the current request is completely cleaned out. All existing data is
    removed. This is to prevent another person from using the same Web browser
    to log in and have access to the previous user's session data. If you want
    to put anything into the session that will be available to the user
    immediately after logging out, do that *after* calling
    :func:`django.contrib.auth.logout()`.

.. _topics-auth-signals:

Login and logout signals
------------------------

.. versionadded:: 1.3

The auth framework uses two :doc:`signals </topics/signals>` that can be used
for notification when a user logs in or out.

.. data:: django.contrib.auth.signals.user_logged_in

Sent when a user logs in successfully.

Arguments sent with this signal:

``sender``
    As above: the class of the user that just logged in.

``request``
    The current :class:`~django.http.HttpRequest` instance.

``user``
    The user instance that just logged in.

.. data:: django.contrib.auth.signals.user_logged_out

Sent when the logout method is called.

``sender``
    As above: the class of the user that just logged out or ``None``
    if the user was not authenticated.

``request``
    The current :class:`~django.http.HttpRequest` instance.

``user``
    The user instance that just logged out or ``None`` if the
    user was not authenticated.

Limiting access to logged-in users
----------------------------------

The raw way
~~~~~~~~~~~

The simple, raw way to limit access to pages is to check
:meth:`request.user.is_authenticated()
<django.contrib.auth.models.User.is_authenticated()>` and either redirect to a
login page::

    from django.http import HttpResponseRedirect

    def my_view(request):
        if not request.user.is_authenticated():
            return HttpResponseRedirect('/login/?next=%s' % request.path)
        # ...

...or display an error message::

    def my_view(request):
        if not request.user.is_authenticated():
            return render_to_response('myapp/login_error.html')
        # ...

The login_required decorator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: decorators.login_required([redirect_field_name=REDIRECT_FIELD_NAME, login_url=None])

    As a shortcut, you can use the convenient
    :func:`~django.contrib.auth.decorators.login_required` decorator::

        from django.contrib.auth.decorators import login_required

        @login_required
        def my_view(request):
            ...

    :func:`~django.contrib.auth.decorators.login_required` does the following:

    * If the user isn't logged in, redirect to
      :setting:`settings.LOGIN_URL <LOGIN_URL>`, passing the current absolute
      path in the query string. Example: ``/accounts/login/?next=/polls/3/``.

    * If the user is logged in, execute the view normally. The view code is
      free to assume the user is logged in.

    By default, the path that the user should be redirected to upon
    successful authentication is stored in a query string parameter called
    ``"next"``. If you would prefer to use a different name for this parameter,
    :func:`~django.contrib.auth.decorators.login_required` takes an
    optional ``redirect_field_name`` parameter::

        from django.contrib.auth.decorators import login_required

        @login_required(redirect_field_name='my_redirect_field')
        def my_view(request):
            ...

    Note that if you provide a value to ``redirect_field_name``, you will most
    likely need to customize your login template as well, since the template
    context variable which stores the redirect path will use the value of
    ``redirect_field_name`` as its key rather than ``"next"`` (the default).

    .. versionadded:: 1.3

    :func:`~django.contrib.auth.decorators.login_required` also takes an
    optional ``login_url`` parameter. Example::

        from django.contrib.auth.decorators import login_required

        @login_required(login_url='/accounts/login/')
        def my_view(request):
            ...

    Note that if you don't specify the ``login_url`` parameter, you'll need to map
    the appropriate Django view to :setting:`settings.LOGIN_URL <LOGIN_URL>`. For
    example, using the defaults, add the following line to your URLconf::

        (r'^accounts/login/$', 'django.contrib.auth.views.login'),

.. function:: views.login(request, [template_name, redirect_field_name, authentication_form])

    **URL name:** ``login``

    See :doc:`the URL documentation </topics/http/urls>` for details on using
    named URL patterns.

    Here's what ``django.contrib.auth.views.login`` does:

    * If called via ``GET``, it displays a login form that POSTs to the
      same URL. More on this in a bit.

    * If called via ``POST``, it tries to log the user in. If login is
      successful, the view redirects to the URL specified in ``next``. If
      ``next`` isn't provided, it redirects to
      :setting:`settings.LOGIN_REDIRECT_URL <LOGIN_REDIRECT_URL>` (which
      defaults to ``/accounts/profile/``). If login isn't successful, it
      redisplays the login form.

    It's your responsibility to provide the login form in a template called
    ``registration/login.html`` by default. This template gets passed four
    template context variables:

    * ``form``: A :class:`~django.forms.Form` object representing the login
      form. See the :doc:`forms documentation </topics/forms/index>` for
      more on ``Form`` objects.

    * ``next``: The URL to redirect to after successful login. This may
      contain a query string, too.

    * ``site``: The current :class:`~django.contrib.sites.models.Site`,
      according to the :setting:`SITE_ID` setting. If you don't have the
      site framework installed, this will be set to an instance of
      :class:`~django.contrib.sites.models.RequestSite`, which derives the
      site name and domain from the current
      :class:`~django.http.HttpRequest`.

    * ``site_name``: An alias for ``site.name``. If you don't have the site
      framework installed, this will be set to the value of
      :attr:`request.META['SERVER_NAME'] <django.http.HttpRequest.META>`.
      For more on sites, see :doc:`/ref/contrib/sites`.

    If you'd prefer not to call the template :file:`registration/login.html`,
    you can pass the ``template_name`` parameter via the extra arguments to
    the view in your URLconf. For example, this URLconf line would use
    :file:`myapp/login.html` instead::

        (r'^accounts/login/$', 'django.contrib.auth.views.login', {'template_name': 'myapp/login.html'}),

    You can also specify the name of the ``GET`` field which contains the URL
    to redirect to after login by passing ``redirect_field_name`` to the view.
    By default, the field is called ``next``.

    Here's a sample :file:`registration/login.html` template you can use as a
    starting point. It assumes you have a :file:`base.html` template that
    defines a ``content`` block:

    .. code-block:: html+django

        {% extends "base.html" %}
        {% load url from future %}

        {% block content %}

        {% if form.errors %}
        <p>Your username and password didn't match. Please try again.</p>
        {% endif %}

        <form method="post" action="{% url 'django.contrib.auth.views.login' %}">
        {% csrf_token %}
        <table>
        <tr>
            <td>{{ form.username.label_tag }}</td>
            <td>{{ form.username }}</td>
        </tr>
        <tr>
            <td>{{ form.password.label_tag }}</td>
            <td>{{ form.password }}</td>
        </tr>
        </table>

        <input type="submit" value="login" />
        <input type="hidden" name="next" value="{{ next }}" />
        </form>

        {% endblock %}

    .. versionadded:: 1.2

    If you are using alternate authentication (see
    :ref:`authentication-backends`) you can pass a custom authentication form
    to the login view via the ``authentication_form`` parameter. This form must
    accept a ``request`` keyword argument in its ``__init__`` method, and
    provide a ``get_user`` method which returns the authenticated user object
    (this method is only ever called after successful form validation).

    .. _forms documentation: ../forms/
    .. _site framework docs: ../sites/

    .. versionadded:: 1.4

    The :func:`~views.login` view and the :ref:`other-built-in-views` now all
    return a :class:`~django.template.response.TemplateResponse` instance,
    which allows you to easily customize the response data before rendering.
    For more details, see the
    :doc:`TemplateResponse documentation </ref/template-response>`.

.. _other-built-in-views:

Other built-in views
--------------------

.. module:: django.contrib.auth.views

In addition to the :func:`~views.login` view, the authentication system
includes a few other useful built-in views located in
:mod:`django.contrib.auth.views`:

.. function:: logout(request, [next_page, template_name, redirect_field_name])

    Logs a user out.

    **URL name:** ``logout``

    See :doc:`the URL documentation </topics/http/urls>` for details on using
    named URL patterns.

    **Optional arguments:**

    * ``next_page``: The URL to redirect to after logout.

    * ``template_name``: The full name of a template to display after
      logging the user out. Defaults to
      :file:`registration/logged_out.html` if no argument is supplied.

    * ``redirect_field_name``: The name of a ``GET`` field containing the
      URL to redirect to after log out. Overrides ``next_page`` if the given
      ``GET`` parameter is passed.

    **Template context:**

    * ``title``: The string "Logged out", localized.

    * ``site``: The current :class:`~django.contrib.sites.models.Site`,
      according to the :setting:`SITE_ID` setting. If you don't have the
      site framework installed, this will be set to an instance of
      :class:`~django.contrib.sites.models.RequestSite`, which derives the
      site name and domain from the current
      :class:`~django.http.HttpRequest`.

    * ``site_name``: An alias for ``site.name``. If you don't have the site
      framework installed, this will be set to the value of
      :attr:`request.META['SERVER_NAME'] <django.http.HttpRequest.META>`.
      For more on sites, see :doc:`/ref/contrib/sites`.

.. function:: logout_then_login(request[, login_url])

    Logs a user out, then redirects to the login page.

    **URL name:** No default URL provided

    **Optional arguments:**

    * ``login_url``: The URL of the login page to redirect to.
      Defaults to :setting:`settings.LOGIN_URL <LOGIN_URL>` if not supplied.

.. function:: password_change(request[, template_name, post_change_redirect, password_change_form])

    Allows a user to change their password.

    **URL name:** ``password_change``

    **Optional arguments:**

    * ``template_name``: The full name of a template to use for
      displaying the password change form. Defaults to
      :file:`registration/password_change_form.html` if not supplied.

    * ``post_change_redirect``: The URL to redirect to after a successful
      password change.

      .. versionadded:: 1.2

    * ``password_change_form``: A custom "change password" form which must
      accept a ``user`` keyword argument. The form is responsible for
      actually changing the user's password. Defaults to
      :class:`~django.contrib.auth.forms.PasswordChangeForm`.

    **Template context:**

    * ``form``: The password change form (see ``password_change_form`` above).

.. function:: password_change_done(request[, template_name])

    The page shown after a user has changed their password.

    **URL name:** ``password_change_done``

    **Optional arguments:**

    * ``template_name``: The full name of a template to use.
      Defaults to :file:`registration/password_change_done.html` if not
      supplied.

.. function:: password_reset(request[, is_admin_site, template_name, email_template_name, password_reset_form, token_generator, post_reset_redirect, from_email])

    Allows a user to reset their password by generating a one-time use link
    that can be used to reset the password, and sending that link to the
    user's registered email address.

    .. versionchanged:: 1.3
        The ``from_email`` argument was added.

    .. versionchanged:: 1.4
        Users flagged with an unusable password (see
        :meth:`~django.contrib.auth.models.User.set_unusable_password()`
        will not be able to request a password reset to prevent misuse
        when using an external authentication source like LDAP.

    **URL name:** ``password_reset``

    **Optional arguments:**

    * ``template_name``: The full name of a template to use for
      displaying the password reset form. Defaults to
      :file:`registration/password_reset_form.html` if not supplied.

    * ``email_template_name``: The full name of a template to use for
      generating the email with the reset password link. Defaults to
      :file:`registration/password_reset_email.html` if not supplied.

    * ``subject_template_name``: The full name of a template to use for
      the subject of the email with the reset password link. Defaults
      to :file:`registration/password_reset_subject.txt` if not supplied.

      .. versionadded:: 1.4

    * ``password_reset_form``: Form that will be used to get the email of
      the user to reset the password for. Defaults to
      :class:`~django.contrib.auth.forms.PasswordResetForm`.

    * ``token_generator``: Instance of the class to check the one time link.
      This will default to ``default_token_generator``, it's an instance of
      ``django.contrib.auth.tokens.PasswordResetTokenGenerator``.

    * ``post_reset_redirect``: The URL to redirect to after a successful
      password reset request.

    * ``from_email``: A valid email address. By default Django uses
      the :setting:`DEFAULT_FROM_EMAIL`.

    **Template context:**

    * ``form``: The form (see ``password_reset_form`` above) for resetting
      the user's password.

    **Email template context:**

    * ``email``: An alias for ``user.email``

    * ``user``: The current :class:`~django.contrib.auth.models.User`,
      according to the ``email`` form field. Only active users are able to
      reset their passwords (``User.is_active is True``).

    * ``site_name``: An alias for ``site.name``. If you don't have the site
      framework installed, this will be set to the value of
      :attr:`request.META['SERVER_NAME'] <django.http.HttpRequest.META>`.
      For more on sites, see :doc:`/ref/contrib/sites`.

    * ``domain``: An alias for ``site.domain``. If you don't have the site
      framework installed, this will be set to the value of
      ``request.get_host()``.

    * ``protocol``: http or https

    * ``uid``: The user's id encoded in base 36.

    * ``token``: Token to check that the reset link is valid.

    Sample ``registration/password_reset_email.html`` (email body template):

    .. code-block:: html+django

        {% load url from future %}
        Someone asked for password reset for email {{ email }}. Follow the link below:
        {{ protocol}}://{{ domain }}{% url 'password_reset_confirm' uidb36=uid token=token %}

    The same template context is used for subject template. Subject must be
    single line plain text string.


.. function:: password_reset_done(request[, template_name])

    The page shown after a user has been emailed a link to reset their
    password. This view is called by default if the :func:`password_reset` view
    doesn't have an explicit ``post_reset_redirect`` URL set.

    **URL name:** ``password_reset_done``

    **Optional arguments:**

    * ``template_name``: The full name of a template to use.
      Defaults to :file:`registration/password_reset_done.html` if not
      supplied.

.. function:: password_reset_confirm(request[, uidb36, token, template_name, token_generator, set_password_form, post_reset_redirect])

    Presents a form for entering a new password.

    **URL name:** ``password_reset_confirm``

    **Optional arguments:**

    * ``uidb36``: The user's id encoded in base 36. Defaults to ``None``.

    * ``token``: Token to check that the password is valid. Defaults to
      ``None``.

    * ``template_name``: The full name of a template to display the confirm
      password view. Default value is :file:`registration/password_reset_confirm.html`.

    * ``token_generator``: Instance of the class to check the password. This
      will default to ``default_token_generator``, it's an instance of
      ``django.contrib.auth.tokens.PasswordResetTokenGenerator``.

    * ``set_password_form``: Form that will be used to set the password.
      Defaults to :class:`~django.contrib.auth.forms.SetPasswordForm`

    * ``post_reset_redirect``: URL to redirect after the password reset
      done. Defaults to ``None``.

    **Template context:**

    * ``form``: The form (see ``set_password_form`` above) for setting the
      new user's password.

    * ``validlink``: Boolean, True if the link (combination of uidb36 and
      token) is valid or unused yet.

.. function:: password_reset_complete(request[,template_name])

   Presents a view which informs the user that the password has been
   successfully changed.

   **URL name:** ``password_reset_complete``

   **Optional arguments:**

   * ``template_name``: The full name of a template to display the view.
     Defaults to :file:`registration/password_reset_complete.html`.

Helper functions
----------------

.. currentmodule:: django.contrib.auth.views

.. function:: redirect_to_login(next[, login_url, redirect_field_name])

    Redirects to the login page, and then back to another URL after a
    successful login.

    **Required arguments:**

    * ``next``: The URL to redirect to after a successful login.

    **Optional arguments:**

    * ``login_url``: The URL of the login page to redirect to.
      Defaults to :setting:`settings.LOGIN_URL <LOGIN_URL>` if not supplied.

    * ``redirect_field_name``: The name of a ``GET`` field containing the
      URL to redirect to after log out. Overrides ``next`` if the given
      ``GET`` parameter is passed.

Built-in forms
--------------

.. module:: django.contrib.auth.forms

If you don't want to use the built-in views, but want the convenience of not
having to write forms for this functionality, the authentication system
provides several built-in forms located in :mod:`django.contrib.auth.forms`:

.. class:: AdminPasswordChangeForm

    A form used in the admin interface to change a user's password.

.. class:: AuthenticationForm

    A form for logging a user in.

.. class:: PasswordChangeForm

    A form for allowing a user to change their password.

.. class:: PasswordResetForm

    A form for generating and emailing a one-time use link to reset a
    user's password.

.. class:: SetPasswordForm

    A form that lets a user change his/her password without entering the old
    password.

.. class:: UserChangeForm

    A form used in the admin interface to change a user's information and
    permissions.

.. class:: UserCreationForm

    A form for creating a new user.

Limiting access to logged-in users that pass a test
---------------------------------------------------

.. currentmodule:: django.contrib.auth.decorators

To limit access based on certain permissions or some other test, you'd do
essentially the same thing as described in the previous section.

The simple way is to run your test on :attr:`request.user
<django.http.HttpRequest.user>` in the view directly. For example, this view
checks to make sure the user is logged in and has the permission
``polls.can_vote``::

    def my_view(request):
        if not request.user.has_perm('polls.can_vote'):
            return HttpResponse("You can't vote in this poll.")
        # ...

.. function:: user_passes_test(func, [login_url=None])

    As a shortcut, you can use the convenient ``user_passes_test`` decorator::

        from django.contrib.auth.decorators import user_passes_test

        @user_passes_test(lambda u: u.has_perm('polls.can_vote'))
        def my_view(request):
            ...

    We're using this particular test as a relatively simple example. However,
    if you just want to test whether a permission is available to a user, you
    can use the :func:`~django.contrib.auth.decorators.permission_required()`
    decorator, described later in this document.

    :func:`~django.contrib.auth.decorators.user_passes_test` takes a required
    argument: a callable that takes a
    :class:`~django.contrib.auth.models.User` object and returns ``True`` if
    the user is allowed to view the page. Note that
    :func:`~django.contrib.auth.decorators.user_passes_test` does not
    automatically check that the :class:`~django.contrib.auth.models.User` is
    not anonymous.

    :func:`~django.contrib.auth.decorators.user_passes_test()` takes an
    optional ``login_url`` argument, which lets you specify the URL for your
    login page (:setting:`settings.LOGIN_URL <LOGIN_URL>` by default).

    For example::

        from django.contrib.auth.decorators import user_passes_test

        @user_passes_test(lambda u: u.has_perm('polls.can_vote'), login_url='/login/')
        def my_view(request):
            ...

The permission_required decorator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: permission_required([login_url=None, raise_exception=False])

    It's a relatively common task to check whether a user has a particular
    permission. For that reason, Django provides a shortcut for that case: the
    :func:`~django.contrib.auth.decorators.permission_required()` decorator.
    Using this decorator, the earlier example can be written as::

        from django.contrib.auth.decorators import permission_required

        @permission_required('polls.can_vote')
        def my_view(request):
            ...

    As for the :meth:`User.has_perm` method, permission names take the form
    ``"<app label>.<permission codename>"`` (i.e. ``polls.can_vote`` for a
    permission on a model in the ``polls`` application).

    Note that :func:`~django.contrib.auth.decorators.permission_required()`
    also takes an optional ``login_url`` parameter. Example::

        from django.contrib.auth.decorators import permission_required

        @permission_required('polls.can_vote', login_url='/loginpage/')
        def my_view(request):
            ...

    As in the :func:`~decorators.login_required` decorator, ``login_url``
    defaults to :setting:`settings.LOGIN_URL <LOGIN_URL>`.

    .. versionchanged:: 1.4

    Added ``raise_exception`` parameter. If given, the decorator will raise
    :exc:`~django.core.exceptions.PermissionDenied`, prompting
    :ref:`the 403 (HTTP Forbidden) view<http_forbidden_view>` instead of
    redirecting to the login page.

.. currentmodule:: django.contrib.auth

Applying permissions to generic views
-------------------------------------

To apply a permission to a :doc:`class-based generic view
</ref/class-based-views>`, decorate the :meth:`View.dispatch
<django.views.generic.base.View.dispatch>` method on the class. See
:ref:`decorating-class-based-views` for details.

Function-based generic views
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To limit access to a :doc:`function-based generic view </ref/generic-views>`,
write a thin wrapper around the view, and point your URLconf to your wrapper
instead of the generic view itself. For example::

    from django.views.generic.date_based import object_detail

    @login_required
    def limited_object_detail(*args, **kwargs):
        return object_detail(*args, **kwargs)

.. _permissions:

Permissions
===========

Django comes with a simple permissions system. It provides a way to assign
permissions to specific users and groups of users.

It's used by the Django admin site, but you're welcome to use it in your own
code.

The Django admin site uses permissions as follows:

* Access to view the "add" form and add an object is limited to users with
  the "add" permission for that type of object.
* Access to view the change list, view the "change" form and change an
  object is limited to users with the "change" permission for that type of
  object.
* Access to delete an object is limited to users with the "delete"
  permission for that type of object.

Permissions can be set not only per type of object, but also per specific
object instance. By using the
:meth:`~django.contrib.admin.ModelAdmin.has_add_permission`,
:meth:`~django.contrib.admin.ModelAdmin.has_change_permission` and
:meth:`~django.contrib.admin.ModelAdmin.has_delete_permission` methods provided
by the :class:`~django.contrib.admin.ModelAdmin` class, it is possible to
customize permissions for different object instances of the same type.

Default permissions
-------------------

When ``django.contrib.auth`` is listed in your :setting:`INSTALLED_APPS`
setting, it will ensure that three default permissions -- add, change and
delete -- are created for each Django model defined in one of your installed
applications.

These permissions will be created when you run :djadmin:`manage.py syncdb
<syncdb>`; the first time you run ``syncdb`` after adding
``django.contrib.auth`` to :setting:`INSTALLED_APPS`, the default permissions
will be created for all previously-installed models, as well as for any new
models being installed at that time. Afterward, it will create default
permissions for new models each time you run :djadmin:`manage.py syncdb
<syncdb>`.

Assuming you have an application with an
:attr:`~django.db.models.Options.app_label` ``foo`` and a model named ``Bar``,
to test for basic permissions you should use:

* add: ``user.has_perm('foo.add_bar')``
* change: ``user.has_perm('foo.change_bar')``
* delete: ``user.has_perm('foo.delete_bar')``

.. _custom-permissions:

Custom permissions
------------------

To create custom permissions for a given model object, use the ``permissions``
:ref:`model Meta attribute <meta-options>`.

This example Task model creates three custom permissions, i.e., actions users
can or cannot do with Task instances, specific to your application::

    class Task(models.Model):
        ...
        class Meta:
            permissions = (
                ("view_task", "Can see available tasks"),
                ("change_task_status", "Can change the status of tasks"),
                ("close_task", "Can remove a task by setting its status as closed"),
            )

The only thing this does is create those extra permissions when you run
:djadmin:`manage.py syncdb <syncdb>`. Your code is in charge of checking the
value of these permissions when an user is trying to access the functionality
provided by the application (viewing tasks, changing the status of tasks,
closing tasks.) Continuing the above example, the following checks if a user may
view tasks::

    user.has_perm('app.view_task')

API reference
-------------

.. currentmodule:: django.contrib.auth.models

.. class:: models.Permission

Fields
~~~~~~

:class:`~django.contrib.auth.models.Permission` objects have the following
fields:

.. attribute:: Permission.name

    Required. 50 characters or fewer. Example: ``'Can vote'``.

.. attribute:: Permission.content_type

    Required. A reference to the ``django_content_type`` database table, which
    contains a record for each installed Django model.

.. attribute:: Permission.codename

    Required. 100 characters or fewer. Example: ``'can_vote'``.

Methods
~~~~~~~

:class:`~django.contrib.auth.models.Permission` objects have the standard
data-access methods like any other :doc:`Django model </ref/models/instances>`.

.. currentmodule:: django.contrib.auth

Programmatically creating permissions
-------------------------------------

While custom permissions can be defined within a model's ``Meta`` class, you
can also create permissions directly. For example, you can create the
``can_publish`` permission for a ``BlogPost`` model in ``myapp``::

    from django.contrib.auth.models import Group, Permission
    from django.contrib.contenttypes.models import ContentType

    content_type = ContentType.objects.get(app_label='myapp', model='BlogPost')
    permission = Permission.objects.create(codename='can_publish',
                                           name='Can Publish Posts',
                                           content_type=content_type)

The permission can then be assigned to a
:class:`~django.contrib.auth.models.User` via its ``user_permissions``
attribute or to a :class:`~django.contrib.auth.models.Group` via its
``permissions`` attribute.

Authentication data in templates
================================

The currently logged-in user and his/her permissions are made available in the
:doc:`template context </ref/templates/api>` when you use
:class:`~django.template.context.RequestContext`.

.. admonition:: Technicality

   Technically, these variables are only made available in the template context
   if you use :class:`~django.template.context.RequestContext` *and* your
   :setting:`TEMPLATE_CONTEXT_PROCESSORS` setting contains
   ``"django.contrib.auth.context_processors.auth"``, which is default. For
   more, see the :ref:`RequestContext docs <subclassing-context-requestcontext>`.

Users
-----

When rendering a template :class:`~django.template.context.RequestContext`, the
currently logged-in user, either a  :class:`~django.contrib.auth.models.User`
instance or an :class:`~django.contrib.auth.models.AnonymousUser` instance, is
stored in the template variable ``{{ user }}``:

.. code-block:: html+django

    {% if user.is_authenticated %}
        <p>Welcome, {{ user.username }}. Thanks for logging in.</p>
    {% else %}
        <p>Welcome, new user. Please log in.</p>
    {% endif %}

This template context variable is not available if a ``RequestContext`` is not
being used.

Permissions
-----------

The currently logged-in user's permissions are stored in the template variable
``{{ perms }}``. This is an instance of
:class:`django.contrib.auth.context_processors.PermWrapper`, which is a
template-friendly proxy of permissions.

.. versionchanged:: 1.3
    Prior to version 1.3, ``PermWrapper`` was located in
    ``django.core.context_processors``.

In the ``{{ perms }}`` object, single-attribute lookup is a proxy to
:meth:`User.has_module_perms <django.contrib.auth.models.User.has_module_perms>`.
This example would display ``True`` if the logged-in user had any permissions
in the ``foo`` app::

    {{ perms.foo }}

Two-level-attribute lookup is a proxy to
:meth:`User.has_perm <django.contrib.auth.models.User.has_perm>`. This example
would display ``True`` if the logged-in user had the permission
``foo.can_vote``::

    {{ perms.foo.can_vote }}

Thus, you can check permissions in template ``{% if %}`` statements:

.. code-block:: html+django

    {% if perms.foo %}
        <p>You have permission to do something in the foo app.</p>
        {% if perms.foo.can_vote %}
            <p>You can vote!</p>
        {% endif %}
        {% if perms.foo.can_drive %}
            <p>You can drive!</p>
        {% endif %}
    {% else %}
        <p>You don't have permission to do anything in the foo app.</p>
    {% endif %}

Groups
======

Groups are a generic way of categorizing users so you can apply permissions, or
some other label, to those users. A user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For
example, if the group ``Site editors`` has the permission
``can_edit_home_page``, any user in that group will have that permission.

Beyond permissions, groups are a convenient way to categorize users to give
them some label, or extended functionality. For example, you could create a
group ``'Special users'``, and you could write code that could, say, give them
access to a members-only portion of your site, or send them members-only email
messages.

API reference
-------------

.. class:: models.Group

Fields
~~~~~~

:class:`~django.contrib.auth.models.Group` objects have the following fields:

.. attribute:: Group.name

    Required. 80 characters or fewer. Any characters are permitted. Example:
    ``'Awesome Users'``.

.. attribute:: Group.permissions

    Many-to-many field to :class:`~django.contrib.auth.models.Permissions`::

        group.permissions = [permission_list]
        group.permissions.add(permission, permission, ...)
        group.permissions.remove(permission, permission, ...)
        group.permissions.clear()

.. _authentication-backends:

Other authentication sources
============================

The authentication that comes with Django is good enough for most common cases,
but you may have the need to hook into another authentication source -- that
is, another source of usernames and passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username
and password for every employee. It'd be a hassle for both the network
administrator and the users themselves if users had separate accounts in LDAP
and the Django-based applications.

So, to handle situations like this, the Django authentication system lets you
plug in other authentication sources. You can override Django's default
database-based scheme, or you can use the default system in tandem with other
systems.

See the :doc:`authentication backend reference </ref/authbackends>`
for information on the authentication backends included with Django.

Specifying authentication backends
----------------------------------

Behind the scenes, Django maintains a list of "authentication backends" that it
checks for authentication. When somebody calls
:func:`django.contrib.auth.authenticate()` -- as described in :ref:`How to log
a user in <how-to-log-a-user-in>` above -- Django tries authenticating across
all of its authentication backends. If the first authentication method fails,
Django tries the second one, and so on, until all backends have been attempted.

The list of authentication backends to use is specified in the
:setting:`AUTHENTICATION_BACKENDS` setting. This should be a tuple of Python
path names that point to Python classes that know how to authenticate. These
classes can be anywhere on your Python path.

By default, :setting:`AUTHENTICATION_BACKENDS` is set to::

    ('django.contrib.auth.backends.ModelBackend',)

That's the basic authentication backend that checks the Django users database
and queries the builtin permissions. It does not provide protection against
brute force attacks via any rate limiting mechanism. You may either implement
your own rate limiting mechanism in a custom auth backend, or use the
mechanisms provided by most Web servers.

The order of :setting:`AUTHENTICATION_BACKENDS` matters, so if the same
username and password is valid in multiple backends, Django will stop
processing at the first positive match.

.. note::

    Once a user has authenticated, Django stores which backend was used to
    authenticate the user in the user's session, and re-uses the same backend
    for the duration of that session whenever access to the currently
    authenticated user is needed. This effectively means that authentication
    sources are cached on a per-session basis, so if you change
    :setting:`AUTHENTICATION_BACKENDS`, you'll need to clear out session data if
    you need to force users to re-authenticate using different methods. A simple
    way to do that is simply to execute ``Session.objects.all().delete()``.

Writing an authentication backend
---------------------------------

An authentication backend is a class that implements two required methods:
``get_user(user_id)`` and ``authenticate(**credentials)``, as well as a set of
optional permission related :ref:`authorization methods <authorization_methods>`.

The ``get_user`` method takes a ``user_id`` -- which could be a username,
database ID or whatever -- and returns a ``User`` object.

The ``authenticate`` method takes credentials as keyword arguments. Most of
the time, it'll just look like this::

    class MyBackend(object):
        def authenticate(self, username=None, password=None):
            # Check the username/password and return a User.

But it could also authenticate a token, like so::

    class MyBackend(object):
        def authenticate(self, token=None):
            # Check the token and return a User.

Either way, ``authenticate`` should check the credentials it gets, and it
should return a ``User`` object that matches those credentials, if the
credentials are valid. If they're not valid, it should return ``None``.

The Django admin system is tightly coupled to the Django ``User`` object
described at the beginning of this document. For now, the best way to deal with
this is to create a Django ``User`` object for each user that exists for your
backend (e.g., in your LDAP directory, your external SQL database, etc.) You
can either write a script to do this in advance, or your ``authenticate``
method can do it the first time a user logs in.

Here's an example backend that authenticates against a username and password
variable defined in your ``settings.py`` file and creates a Django ``User``
object the first time a user authenticates::

    from django.conf import settings
    from django.contrib.auth.models import User, check_password

    class SettingsBackend(object):
        """
        Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.

        Use the login name, and a hash of the password. For example:

        ADMIN_LOGIN = 'admin'
        ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de'
        """

        supports_inactive_user = False

        def authenticate(self, username=None, password=None):
            login_valid = (settings.ADMIN_LOGIN == username)
            pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
            if login_valid and pwd_valid:
                try:
                    user = User.objects.get(username=username)
                except User.DoesNotExist:
                    # Create a new user. Note that we can set password
                    # to anything, because it won't be checked; the password
                    # from settings.py will.
                    user = User(username=username, password='get from settings.py')
                    user.is_staff = True
                    user.is_superuser = True
                    user.save()
                return user
            return None

        def get_user(self, user_id):
            try:
                return User.objects.get(pk=user_id)
            except User.DoesNotExist:
                return None

.. _authorization_methods:

Handling authorization in custom backends
-----------------------------------------

Custom auth backends can provide their own permissions.

The user model will delegate permission lookup functions
(:meth:`~django.contrib.auth.models.User.get_group_permissions()`,
:meth:`~django.contrib.auth.models.User.get_all_permissions()`,
:meth:`~django.contrib.auth.models.User.has_perm()`, and
:meth:`~django.contrib.auth.models.User.has_module_perms()`) to any
authentication backend that implements these functions.

The permissions given to the user will be the superset of all permissions
returned by all backends. That is, Django grants a permission to a user that
any one backend grants.

The simple backend above could implement permissions for the magic admin
fairly simply::

    class SettingsBackend(object):

        # ...

        def has_perm(self, user_obj, perm, obj=None):
            if user_obj.username == settings.ADMIN_LOGIN:
                return True
            else:
                return False

This gives full permissions to the user granted access in the above example.
Notice that in addition to the same arguments given to the associated
:class:`django.contrib.auth.models.User` functions, the backend auth functions
all take the user object, which may be an anonymous user, as an argument.

A full authorization implementation can be found in the ``ModelBackend`` class
in `django/contrib/auth/backends.py`_, which is the default backend and queries
the ``auth_permission`` table most of the time. If you wish to provide
custom behavior for only part of the backend API, you can take advantage of
Python inheritence and subclass ``ModelBackend`` instead of implementing the
complete API in a custom backend.

.. _django/contrib/auth/backends.py: https://code.djangoproject.com/browser/django/trunk/django/contrib/auth/backends.py

.. _anonymous_auth:

Authorization for anonymous users
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. versionchanged:: 1.2

An anonymous user is one that is not authenticated i.e. they have provided no
valid authentication details. However, that does not necessarily mean they are
not authorized to do anything. At the most basic level, most Web sites
authorize anonymous users to browse most of the site, and many allow anonymous
posting of comments etc.

Django's permission framework does not have a place to store permissions for
anonymous users. However, the user object passed to an authentication backend
may be an :class:`django.contrib.auth.models.AnonymousUser` object, allowing
the backend to specify custom authorization behavior for anonymous users. This
is especially useful for the authors of re-usable apps, who can delegate all
questions of authorization to the auth backend, rather than needing settings,
for example, to control anonymous access.

.. _inactive_auth:

Authorization for inactive users
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. versionchanged:: 1.3

An inactive user is a one that is authenticated but has its attribute
``is_active`` set to ``False``. However this does not mean they are not
authorized to do anything. For example they are allowed to activate their
account.

The support for anonymous users in the permission system allows for a scenario
where anonymous users have permissions to do something while inactive
authenticated users do not.

To enable this on your own backend, you must set the class attribute
``supports_inactive_user`` to ``True``.

A nonexisting ``supports_inactive_user`` attribute will raise a
``PendingDeprecationWarning`` if used in Django 1.3. In Django 1.4, this
warning will be updated to a ``DeprecationWarning`` which will be displayed
loudly. Additionally ``supports_inactive_user`` will be set to ``False``.
Django 1.5 will assume that every backend supports inactive users being
passed to the authorization methods.


Handling object permissions
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Django's permission framework has a foundation for object permissions, though
there is no implementation for it in the core. That means that checking for
object permissions will always return ``False`` or an empty list (depending on
the check performed). An authentication backend will receive the keyword
parameters ``obj`` and ``user_obj`` for each object related authorization
method and can return the object level permission as appropriate.