Sophie

Sophie

distrib > Fedora > 18 > i386 > by-pkgid > 971a3706a7676677c8b7bbdffc0c4b9b > files > 240

sagemath-doc-ru-5.9-9.fc18.noarch.rpm

Теория чисел
============

Sage имеет обширную функциональность в плане теории чисел. Например, 
можно производить арифметические операции в :math:`\ZZ/N\ZZ`:

::

    sage: R = IntegerModRing(97)
    sage: a = R(2) / R(3)
    sage: a
    33
    sage: a.rational_reconstruction()
    2/3
    sage: b = R(47)
    sage: b^20052005
    50
    sage: b.modulus()
    97
    sage: b.is_square()
    True

Sage содержит стандартные функции теории чисел. Например,

::

    sage: gcd(515,2005)
    5
    sage: factor(2005)
    5 * 401
    sage: c = factorial(25); c
    15511210043330985984000000
    sage: [valuation(c,p) for p in prime_range(2,23)]
    [22, 10, 6, 3, 2, 1, 1, 1]
    sage: next_prime(2005)
    2011
    sage: previous_prime(2005)
    2003
    sage: divisors(28); sum(divisors(28)); 2*28
    [1, 2, 4, 7, 14, 28]
    56
    56

Отлично!

Функция ``sigma(n,k)`` в Sage суммирует :math:`k`-е степени делителей ``n``:

::

    sage: sigma(28,0); sigma(28,1); sigma(28,2)
    6
    56
    1050

Далее покажем алгоритм Эвклида, :math:`\phi`-функцию Эйлера и китайскую 
теорему об остатках:

::

    sage: d,u,v = xgcd(12,15)
    sage: d == u*12 + v*15
    True
    sage: n = 2005
    sage: inverse_mod(3,n)
    1337
    sage: 3 * 1337
    4011
    sage: prime_divisors(n)
    [5, 401]
    sage: phi = n*prod([1 - 1/p for p in prime_divisors(n)]); phi
    1600
    sage: euler_phi(n)
    1600
    sage: prime_to_m_part(n, 5)
    401

Уясним кое-что для :math:`3n+1`.

::

    sage: n = 2005
    sage: for i in range(1000):
    ...       n = 3*odd_part(n) + 1
    ...       if odd_part(n)==1:
    ...           print i
    ...           break
    38

Китайская теорема об остатках:

::

    sage: x = crt(2, 1, 3, 5); x   
    11
    sage: x % 3  # x mod 3 = 2
    2
    sage: x % 5  # x mod 5 = 1
    1
    sage: [binomial(13,m) for m in range(14)]
    [1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1]
    sage: [binomial(13,m)%2 for m in range(14)]
    [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
    sage: [kronecker(m,13) for m in range(1,13)]
    [1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1]
    sage: n = 10000; sum([moebius(m) for m in range(1,n)])
    -23
    sage: Partitions(4).list()
    [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]


:math:`p`--адические числа
--------------------------

Поле :math:`p`-адических чисел реализовано в Sage. Обратите внимание: 
как только поле :math:`p`-адических чисел создано, его точность не 
может быть изменена.

::

    sage: K = Qp(11); K
    11-adic Field with capped relative precision 20
    sage: a = K(211/17); a
    4 + 4*11 + 11^2 + 7*11^3 + 9*11^5 + 5*11^6 + 4*11^7 + 8*11^8 + 7*11^9 
      + 9*11^10 + 3*11^11 + 10*11^12 + 11^13 + 5*11^14 + 6*11^15 + 2*11^16 
      + 3*11^17 + 11^18 + 7*11^19 + O(11^20)
    sage: b = K(3211/11^2); b
    10*11^-2 + 5*11^-1 + 4 + 2*11 + O(11^18)

Большое количество методов встроено для класса NumberField.

::

    sage: R.<x> = PolynomialRing(QQ)
    sage: K = NumberField(x^3 + x^2 - 2*x + 8, 'a')
    sage: K.integral_basis()
    [1, 1/2*a^2 + 1/2*a, a^2]

.. link

::

    sage: K.galois_group(type="pari")
    Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the Number Field 
    in a with defining polynomial x^3 + x^2 - 2*x + 8

.. link

::

    sage: K.polynomial_quotient_ring()
    Univariate Quotient Polynomial Ring in a over Rational Field with modulus 
    x^3 + x^2 - 2*x + 8
    sage: K.units()
    [3*a^2 + 13*a + 13]
    sage: K.discriminant()
    -503
    sage: K.class_group()
    Class group of order 1 of Number Field in a with 
    defining polynomial x^3 + x^2 - 2*x + 8
    sage: K.class_number()
    1