Sophie

Sophie

distrib > Fedora > 18 > i386 > by-pkgid > bf21b4394f4d7fa09e3626145d3315e0 > files > 329

python-matplotlib-doc-1.2.0-14.fc18.i686.rpm

.. _pylab_examples-custom_cmap:

pylab_examples example code: custom_cmap.py
===========================================



.. plot:: /builddir/build/BUILD/matplotlib-1.2.0/doc/mpl_examples/pylab_examples/custom_cmap.py

::

    #!/usr/bin/env python
    
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import LinearSegmentedColormap
    
    """
    
    Example: suppose you want red to increase from 0 to 1 over the bottom
    half, green to do the same over the middle half, and blue over the top
    half.  Then you would use:
    
    cdict = {'red':   ((0.0,  0.0, 0.0),
                       (0.5,  1.0, 1.0),
                       (1.0,  1.0, 1.0)),
    
             'green': ((0.0,  0.0, 0.0),
                       (0.25, 0.0, 0.0),
                       (0.75, 1.0, 1.0),
                       (1.0,  1.0, 1.0)),
    
             'blue':  ((0.0,  0.0, 0.0),
                       (0.5,  0.0, 0.0),
                       (1.0,  1.0, 1.0))}
    
    If, as in this example, there are no discontinuities in the r, g, and b
    components, then it is quite simple: the second and third element of
    each tuple, above, is the same--call it "y".  The first element ("x")
    defines interpolation intervals over the full range of 0 to 1, and it
    must span that whole range.  In other words, the values of x divide the
    0-to-1 range into a set of segments, and y gives the end-point color
    values for each segment.
    
    Now consider the green. cdict['green'] is saying that for
    0 <= x <= 0.25, y is zero; no green.
    0.25 < x <= 0.75, y varies linearly from 0 to 1.
    x > 0.75, y remains at 1, full green.
    
    If there are discontinuities, then it is a little more complicated.
    Label the 3 elements in each row in the cdict entry for a given color as
    (x, y0, y1).  Then for values of x between x[i] and x[i+1] the color
    value is interpolated between y1[i] and y0[i+1].
    
    Going back to the cookbook example, look at cdict['red']; because y0 !=
    y1, it is saying that for x from 0 to 0.5, red increases from 0 to 1,
    but then it jumps down, so that for x from 0.5 to 1, red increases from
    0.7 to 1.  Green ramps from 0 to 1 as x goes from 0 to 0.5, then jumps
    back to 0, and ramps back to 1 as x goes from 0.5 to 1.
    
    row i:   x  y0  y1
                    /
                   /
    row i+1: x  y0  y1
    
    Above is an attempt to show that for x in the range x[i] to x[i+1], the
    interpolation is between y1[i] and y0[i+1].  So, y0[0] and y1[-1] are
    never used.
    
    """
    
    
    
    cdict1 = {'red':   ((0.0, 0.0, 0.0),
                       (0.5, 0.0, 0.1),
                       (1.0, 1.0, 1.0)),
    
             'green': ((0.0, 0.0, 0.0),
                       (1.0, 0.0, 0.0)),
    
             'blue':  ((0.0, 0.0, 1.0),
                       (0.5, 0.1, 0.0),
                       (1.0, 0.0, 0.0))
            }
    
    cdict2 = {'red':   ((0.0, 0.0, 0.0),
                       (0.5, 0.0, 1.0),
                       (1.0, 0.1, 1.0)),
    
             'green': ((0.0, 0.0, 0.0),
                       (1.0, 0.0, 0.0)),
    
             'blue':  ((0.0, 0.0, 0.1),
                       (0.5, 1.0, 0.0),
                       (1.0, 0.0, 0.0))
            }
    
    cdict3 = {'red':  ((0.0, 0.0, 0.0),
                       (0.25,0.0, 0.0),
                       (0.5, 0.8, 1.0),
                       (0.75,1.0, 1.0),
                       (1.0, 0.4, 1.0)),
    
             'green': ((0.0, 0.0, 0.0),
                       (0.25,0.0, 0.0),
                       (0.5, 0.9, 0.9),
                       (0.75,0.0, 0.0),
                       (1.0, 0.0, 0.0)),
    
             'blue':  ((0.0, 0.0, 0.4),
                       (0.25,1.0, 1.0),
                       (0.5, 1.0, 0.8),
                       (0.75,0.0, 0.0),
                       (1.0, 0.0, 0.0))
            }
    
    # Make a modified version of cdict3 with some transparency
    # in the middle of the range.
    cdict4 = cdict3.copy()
    cdict4['alpha'] = ((0.0, 1.0, 1.0),
                    #   (0.25,1.0, 1.0),
                       (0.5, 0.3, 0.3),
                    #   (0.75,1.0, 1.0),
                       (1.0, 1.0, 1.0))
    
    
    # Now we will use this example to illustrate 3 ways of
    # handling custom colormaps.
    # First, the most direct and explicit:
    
    blue_red1 = LinearSegmentedColormap('BlueRed1', cdict1)
    
    # Second, create the map explicitly and register it.
    # Like the first method, this method works with any kind
    # of Colormap, not just
    # a LinearSegmentedColormap:
    
    blue_red2 = LinearSegmentedColormap('BlueRed2', cdict2)
    plt.register_cmap(cmap=blue_red2)
    
    # Third, for LinearSegmentedColormap only,
    # leave everything to register_cmap:
    
    plt.register_cmap(name='BlueRed3', data=cdict3) # optional lut kwarg
    plt.register_cmap(name='BlueRedAlpha', data=cdict4)
    
    # Make some illustrative fake data:
    
    x = np.arange(0, np.pi, 0.1)
    y = np.arange(0, 2*np.pi, 0.1)
    X, Y = np.meshgrid(x,y)
    Z = np.cos(X) * np.sin(Y) * 10
    
    # Make the figure:
    
    plt.figure(figsize=(6,9))
    plt.subplots_adjust(left=0.02, bottom=0.06, right=0.95, top=0.94, wspace=0.05)
    
    # Make 4 subplots:
    
    plt.subplot(2,2,1)
    plt.imshow(Z, interpolation='nearest', cmap=blue_red1)
    plt.colorbar()
    
    plt.subplot(2,2,2)
    cmap = plt.get_cmap('BlueRed2')
    plt.imshow(Z, interpolation='nearest', cmap=cmap)
    plt.colorbar()
    
    # Now we will set the third cmap as the default.  One would
    # not normally do this in the middle of a script like this;
    # it is done here just to illustrate the method.
    
    plt.rcParams['image.cmap'] = 'BlueRed3'
    
    plt.subplot(2,2,3)
    plt.imshow(Z, interpolation='nearest')
    plt.colorbar()
    plt.title("Alpha = 1")
    
    # Or as yet another variation, we can replace the rcParams
    # specification *before* the imshow with the following *after*
    # imshow.
    # This sets the new default *and* sets the colormap of the last
    # image-like item plotted via pyplot, if any.
    #
    
    plt.subplot(2,2,4)
    # Draw a line with low zorder so it will be behind the image.
    plt.plot([0, 10*np.pi], [0, 20*np.pi], color='c', lw=20, zorder=-1)
    
    plt.imshow(Z, interpolation='nearest')
    plt.colorbar()
    
    # Here it is: changing the colormap for the current image and its
    # colorbar after they have been plotted.
    plt.set_cmap('BlueRedAlpha')
    plt.title("Varying alpha")
    #
    
    plt.suptitle('Custom Blue-Red colormaps', fontsize=16)
    
    plt.show()
    
    

Keywords: python, matplotlib, pylab, example, codex (see :ref:`how-to-search-examples`)