Sophie

Sophie

distrib > Fedora > 18 > x86_64 > by-pkgid > 8c86774a3e53d77cc119f53a2b94a57a > files > 1285

root-tutorial-5.34.14-2.fc18.noarch.rpm

/////////////////////////////////////////////////////////////////////////
//
// SPlot tutorial
// author: Kyle Cranmer
// date Dec. 2008 
//
// This tutorial shows an example of using SPlot to unfold two distributions.
// The physics context for the example is that we want to know 
// the isolation distribution for real electrons from Z events 
// and fake electrons from QCD.  Isolation is our 'control' variable
// To unfold them, we need a model for an uncorrelated variable that
// discriminates between Z and QCD.  To do this, we use the invariant 
// mass of two electrons.  We model the Z with a Gaussian and the QCD
// with a falling exponential.
//
// Note, since we don't have real data in this tutorial, we need to generate
// toy data.  To do that we need a model for the isolation variable for
// both Z and QCD.  This is only used to generate the toy data, and would
// not be needed if we had real data.
/////////////////////////////////////////////////////////////////////////

#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooStats/SPlot.h"
#include "RooDataSet.h"
#include "RooRealVar.h"
#include "RooGaussian.h"
#include "RooExponential.h"
#include "RooChebychev.h"
#include "RooAddPdf.h"
#include "RooProdPdf.h"
#include "RooAddition.h"
#include "RooProduct.h"
#include "TCanvas.h"
#include "RooAbsPdf.h"
#include "RooFit.h"
#include "RooFitResult.h"
#include "RooWorkspace.h"
#include "RooConstVar.h"

// use this order for safety on library loading
using namespace RooFit ;
using namespace RooStats ;


// see below for implementation
void AddModel(RooWorkspace*);
void AddData(RooWorkspace*);
void DoSPlot(RooWorkspace*);
void MakePlots(RooWorkspace*);

void rs301_splot()
{

  // Create a new workspace to manage the project.
  RooWorkspace* wspace = new RooWorkspace("myWS");

  // add the signal and background models to the workspace.
  // Inside this function you will find a discription our model.
  AddModel(wspace);

  // add some toy data to the workspace
  AddData(wspace);

  // inspect the workspace if you wish
  //  wspace->Print();

  // do sPlot.  
  //This wil make a new dataset with sWeights added for every event.
  DoSPlot(wspace);

  // Make some plots showing the discriminating variable and 
  // the control variable after unfolding.
  MakePlots(wspace);

  // cleanup
  delete wspace;
  
}

 
//____________________________________
void AddModel(RooWorkspace* ws){

  // Make models for signal (Higgs) and background (Z+jets and QCD)
  // In real life, this part requires an intellegent modeling 
  // of signal and background -- this is only an example.  

  // set range of observable
  Double_t lowRange = 00, highRange = 200;

  // make a RooRealVar for the observables
  RooRealVar invMass("invMass", "M_{inv}", lowRange, highRange,"GeV");
  RooRealVar isolation("isolation", "isolation", 0., 20., "GeV");
 

  /////////////////////////////////////////////
  // make 2-d model for Z including the invariant mass 
  // distribution  and an isolation distribution which we want to
  // unfold from QCD.
  std::cout << "make z model" << std::endl;
  // mass model for Z
  RooRealVar mZ("mZ", "Z Mass", 91.2, lowRange, highRange);
  RooRealVar sigmaZ("sigmaZ", "Width of Gaussian", 2,0,10,"GeV");
  RooGaussian mZModel("mZModel", "Z+jets Model", invMass, mZ, sigmaZ);
  // we know Z mass
  mZ.setConstant();
  // we leave the width of the Z free during the fit in this example.

  // isolation model for Z.  Only used to generate toy MC.
  // the exponential is of the form exp(c*x).  If we want
  // the isolation to decay an e-fold every R GeV, we use 
  // c = -1/R.
  RooConstVar zIsolDecayConst("zIsolDecayConst",
			      "z isolation decay  constant", -1);
  RooExponential zIsolationModel("zIsolationModel", "z isolation model",
				 isolation, zIsolDecayConst);

  // make the combined Z model
  RooProdPdf zModel("zModel", "4-d model for Z", 
		    RooArgSet(mZModel, zIsolationModel));

  //////////////////////////////////////////////
  // make QCD model

  std::cout << "make qcd model" << std::endl;
  // mass model for QCD.  
  // the exponential is of the form exp(c*x).  If we want
  // the mass to decay an e-fold every R GeV, we use 
  // c = -1/R.
  // We can leave this parameter free during the fit.
  RooRealVar qcdMassDecayConst("qcdMassDecayConst",
			       "Decay const for QCD mass spectrum", 
			       -0.01, -100, 100,"1/GeV");
  RooExponential qcdMassModel("qcdMassModel", "qcd Mass Model",
			      invMass, qcdMassDecayConst);


  // isolation model for QCD.  Only used to generate toy MC
  // the exponential is of the form exp(c*x).  If we want
  // the isolation to decay an e-fold every R GeV, we use 
  // c = -1/R.
  RooConstVar qcdIsolDecayConst("qcdIsolDecayConst",
			      "Et resolution constant", -.1);
  RooExponential qcdIsolationModel("qcdIsolationModel", "QCD isolation model",
				   isolation, qcdIsolDecayConst);

  // make the 2-d model
  RooProdPdf qcdModel("qcdModel", "2-d model for QCD", 
    RooArgSet(qcdMassModel, qcdIsolationModel));

  //////////////////////////////////////////////
  // combined model

  // These variables represent the number of Z or QCD events
  // They will be fitted.
  RooRealVar zYield("zYield","fitted yield for Z",50 ,0.,1000) ; 
  RooRealVar qcdYield("qcdYield","fitted yield for QCD", 100 ,0.,1000) ; 

  // now make the combined model
  std::cout << "make full model" << std::endl;
  RooAddPdf model("model","z+qcd background models",
		  RooArgList(zModel, qcdModel), 
		  RooArgList(zYield,qcdYield));


  // interesting for debugging and visualizing the model
  model.graphVizTree("fullModel.dot");

  std::cout << "import model" << std::endl;

  ws->import(model);
}

//____________________________________
void AddData(RooWorkspace* ws){
  // Add a toy dataset

  // how many events do we want?
  Int_t nEvents = 1000;

  // get what we need out of the workspace to make toy data
  RooAbsPdf* model = ws->pdf("model");
  RooRealVar* invMass = ws->var("invMass");
  RooRealVar* isolation = ws->var("isolation");
 
  // make the toy data
  std::cout << "make data set and import to workspace" << std::endl;
  RooDataSet* data = model->generate(RooArgSet(*invMass, *isolation),nEvents);
  
  // import data into workspace
  ws->import(*data, Rename("data"));

}

//____________________________________
void DoSPlot(RooWorkspace* ws){
  std::cout << "Calculate sWeights" << std::endl;

  // get what we need out of the workspace to do the fit
  RooAbsPdf* model = ws->pdf("model");
  RooRealVar* zYield = ws->var("zYield");
  RooRealVar* qcdYield = ws->var("qcdYield");
  RooDataSet* data = (RooDataSet*) ws->data("data");

  // fit the model to the data.
  model->fitTo(*data, Extended() );

  // The sPlot technique requires that we fix the parameters
  // of the model that are not yields after doing the fit.
  RooRealVar* sigmaZ = ws->var("sigmaZ");
  RooRealVar* qcdMassDecayConst = ws->var("qcdMassDecayConst");  
  sigmaZ->setConstant();
  qcdMassDecayConst->setConstant();


  RooMsgService::instance().setSilentMode(true);


  // Now we use the SPlot class to add SWeights to our data set
  // based on our model and our yield variables
  RooStats::SPlot* sData = new RooStats::SPlot("sData","An SPlot",
		            *data, model, RooArgList(*zYield,*qcdYield) );


  // Check that our weights have the desired properties

  std::cout << "Check SWeights:" << std::endl;


  std::cout << std::endl <<  "Yield of Z is " 
	    << zYield->getVal() << ".  From sWeights it is "
	    << sData->GetYieldFromSWeight("zYield") << std::endl;


  std::cout << "Yield of QCD is " 
	    << qcdYield->getVal() << ".  From sWeights it is "
	    << sData->GetYieldFromSWeight("qcdYield") << std::endl
	    << std::endl;

  for(Int_t i=0; i < 10; i++)
    {
      std::cout << "z Weight   " << sData->GetSWeight(i,"zYield") 
		<< "   qcd Weight   " << sData->GetSWeight(i,"qcdYield") 
		<< "  Total Weight   " << sData->GetSumOfEventSWeight(i) 
		<< std::endl;
    }

  std::cout << std::endl;

  // import this new dataset with sWeights
 std::cout << "import new dataset with sWeights" << std::endl;
 ws->import(*data, Rename("dataWithSWeights"));


}

void MakePlots(RooWorkspace* ws){

  // Here we make plots of the discriminating variable (invMass) after the fit
  // and of the control variable (isolation) after unfolding with sPlot.
  std::cout << "make plots" << std::endl;

  // make our canvas
  TCanvas* cdata = new TCanvas("sPlot","sPlot demo", 400, 600);
  cdata->Divide(1,3);

  // get what we need out of the workspace
  RooAbsPdf* model = ws->pdf("model");
  RooAbsPdf* zModel = ws->pdf("zModel");
  RooAbsPdf* qcdModel = ws->pdf("qcdModel");

  RooRealVar* isolation = ws->var("isolation");
  RooRealVar* invMass = ws->var("invMass");

  // note, we get the dataset with sWeights
  RooDataSet* data = (RooDataSet*) ws->data("dataWithSWeights");

  // this shouldn't be necessary, need to fix something with workspace
  // do this to set parameters back to their fitted values.
  model->fitTo(*data, Extended() );

  //plot invMass for data with full model and individual componenets overlayed
  //  TCanvas* cdata = new TCanvas();
  cdata->cd(1);
  RooPlot* frame = invMass->frame() ; 
  data->plotOn(frame ) ; 
  model->plotOn(frame) ;   
  model->plotOn(frame,Components(*zModel),LineStyle(kDashed), LineColor(kRed)) ;   
  model->plotOn(frame,Components(*qcdModel),LineStyle(kDashed),LineColor(kGreen)) ;   
    
  frame->SetTitle("Fit of model to discriminating variable");
  frame->Draw() ;
 

  // Now use the sWeights to show isolation distribution for Z and QCD.  
  // The SPlot class can make this easier, but here we demonstrait in more
  // detail how the sWeights are used.  The SPlot class should make this 
  // very easy and needs some more development.

  // Plot isolation for Z component.  
  // Do this by plotting all events weighted by the sWeight for the Z component.
  // The SPlot class adds a new variable that has the name of the corresponding
  // yield + "_sw".
  cdata->cd(2);

  // create weightfed data set 
  RooDataSet * dataw_z = new RooDataSet(data->GetName(),data->GetTitle(),data,*data->get(),0,"zYield_sw") ;

  RooPlot* frame2 = isolation->frame() ; 
  dataw_z->plotOn(frame2, DataError(RooAbsData::SumW2) ) ; 
    
  frame2->SetTitle("isolation distribution for Z");
  frame2->Draw() ;

  // Plot isolation for QCD component.  
  // Eg. plot all events weighted by the sWeight for the QCD component.
  // The SPlot class adds a new variable that has the name of the corresponding
  // yield + "_sw".
  cdata->cd(3);
  RooDataSet * dataw_qcd = new RooDataSet(data->GetName(),data->GetTitle(),data,*data->get(),0,"qcdYield_sw") ;
  RooPlot* frame3 = isolation->frame() ; 
  dataw_qcd->plotOn(frame3,DataError(RooAbsData::SumW2) ) ; 
    
  frame3->SetTitle("isolation distribution for QCD");
  frame3->Draw() ;

  //  cdata->SaveAs("SPlot.gif");

}