Sophie

Sophie

distrib > Fedora > 20 > x86_64 > by-pkgid > d9f573299e87e886807be879704f0b6e > files > 33

julia-doc-0.3.4-1.fc20.noarch.rpm

.. _man-complex-and-rational-numbers:

******************************
 Complex and Rational Numbers  
******************************

Julia ships with predefined types representing both complex and rational
numbers, and supports all :ref:`standard mathematical operations
<man-mathematical-operations>` on them. :ref:`man-conversion-and-promotion`
are defined so that operations on any combination of
predefined numeric types, whether primitive or composite, behave as
expected.

.. _man-complex-numbers:

Complex Numbers
---------------

The global constant ``im`` is bound to the complex number *i*,
representing the principal square root of -1. It was deemed harmful to
co-opt the name ``i`` for a global constant, since it is such a popular
index variable name. Since Julia allows numeric literals to be
:ref:`juxtaposed with identifiers as coefficients
<man-numeric-literal-coefficients>`,
this binding suffices to provide convenient syntax for complex numbers,
similar to the traditional mathematical notation:

.. doctest::

    julia> 1 + 2im
    1 + 2im

You can perform all the standard arithmetic operations with complex
numbers:

.. doctest::

    julia> (1 + 2im)*(2 - 3im)
    8 + 1im

    julia> (1 + 2im)/(1 - 2im)
    -0.6 + 0.8im

    julia> (1 + 2im) + (1 - 2im)
    2 + 0im

    julia> (-3 + 2im) - (5 - 1im)
    -8 + 3im

    julia> (-1 + 2im)^2
    -3 - 4im

    julia> (-1 + 2im)^2.5
    2.7296244647840084 - 6.960664459571898im

    julia> (-1 + 2im)^(1 + 1im)
    -0.27910381075826657 + 0.08708053414102428im

    julia> 3(2 - 5im)
    6 - 15im

    julia> 3(2 - 5im)^2
    -63 - 60im

    julia> 3(2 - 5im)^-1.0
    0.20689655172413796 + 0.5172413793103449im

The promotion mechanism ensures that combinations of operands of
different types just work:

.. doctest::

    julia> 2(1 - 1im)
    2 - 2im

    julia> (2 + 3im) - 1
    1 + 3im

    julia> (1 + 2im) + 0.5
    1.5 + 2.0im

    julia> (2 + 3im) - 0.5im
    2.0 + 2.5im

    julia> 0.75(1 + 2im)
    0.75 + 1.5im

    julia> (2 + 3im) / 2
    1.0 + 1.5im

    julia> (1 - 3im) / (2 + 2im)
    -0.5 - 1.0im

    julia> 2im^2
    -2 + 0im

    julia> 1 + 3/4im
    1.0 - 0.75im

Note that ``3/4im == 3/(4*im) == -(3/4*im)``, since a literal
coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

.. doctest::

    julia> real(1 + 2im)
    1

    julia> imag(1 + 2im)
    2

    julia> conj(1 + 2im)
    1 - 2im

    julia> abs(1 + 2im)
    2.23606797749979

    julia> abs2(1 + 2im)
    5

    julia> angle(1 + 2im)
    1.1071487177940904

As usual, the absolute value (``abs``) of a complex number is its
distance from zero. The ``abs2`` function gives the square of the
absolute value, and is of particular use for complex numbers where it
avoids taking a square root. The ``angle`` function returns the phase
angle in radians (also known as the *argument* or *arg* function). The
full gamut of other :ref:`man-elementary-functions` is also defined
for complex numbers:

.. doctest::

    julia> sqrt(1im)
    0.7071067811865476 + 0.7071067811865475im

    julia> sqrt(1 + 2im)
    1.272019649514069 + 0.7861513777574233im

    julia> cos(1 + 2im)
    2.0327230070196656 - 3.0518977991518im

    julia> exp(1 + 2im)
    -1.1312043837568135 + 2.4717266720048188im

    julia> sinh(1 + 2im)
    -0.4890562590412937 + 1.4031192506220405im

Note that mathematical functions typically return real values when applied
to real numbers and complex values when applied to complex numbers.
For example, ``sqrt`` behaves differently when applied to ``-1``
versus ``-1 + 0im`` even though ``-1 == -1 + 0im``:

.. doctest::

    julia> sqrt(-1)
    ERROR: DomainError
    sqrt will only return a complex result if called with a complex argument.
    try sqrt(complex(x))
     in sqrt at math.jl:131

    julia> sqrt(-1 + 0im)
    0.0 + 1.0im

The :ref:`literal numeric coefficient notation <man-numeric-literal-coefficients>`
does not work when constructing complex number from variables. Instead, the
multiplication must be explicitly written out:

.. doctest::

    julia> a = 1; b = 2; a + b*im
    1 + 2im

However, this is *not* recommended; Use the ``complex`` function instead to
construct a complex value directly from its real and imaginary parts.:

.. doctest::

    julia> complex(a,b)
    1 + 2im

This construction avoids the multiplication and addition operations.

``Inf`` and ``NaN`` propagate through complex numbers in the real
and imaginary parts of a complex number as described in the 
:ref:`man-special-floats` section:

.. doctest::

    julia> 1 + Inf*im
    1.0 + Inf*im

    julia> 1 + NaN*im
    1.0 + NaN*im

.. _man-rational-numbers:

Rational Numbers
----------------

Julia has a rational number type to represent exact ratios of integers.
Rationals are constructed using the ``//`` operator:

.. doctest::

    julia> 2//3
    2//3

If the numerator and denominator of a rational have common factors, they
are reduced to lowest terms such that the denominator is non-negative:

.. doctest::

    julia> 6//9
    2//3

    julia> -4//8
    -1//2

    julia> 5//-15
    -1//3

    julia> -4//-12
    1//3

This normalized form for a ratio of integers is unique, so equality of
rational values can be tested by checking for equality of the numerator
and denominator. The standardized numerator and denominator of a
rational value can be extracted using the ``num`` and ``den`` functions:

.. doctest::

    julia> num(2//3)
    2

    julia> den(2//3)
    3

Direct comparison of the numerator and denominator is generally not
necessary, since the standard arithmetic and comparison operations are
defined for rational values:

.. doctest::

    julia> 2//3 == 6//9
    true

    julia> 2//3 == 9//27
    false

    julia> 3//7 < 1//2
    true

    julia> 3//4 > 2//3
    true

    julia> 2//4 + 1//6
    2//3

    julia> 5//12 - 1//4
    1//6

    julia> 5//8 * 3//12
    5//32

    julia> 6//5 / 10//7
    21//25

Rationals can be easily converted to floating-point numbers:

.. doctest::

    julia> float(3//4)
    0.75

Conversion from rational to floating-point respects the following
identity for any integral values of ``a`` and ``b``, with the exception
of the case ``a == 0`` and ``b == 0``:

.. doctest::

    julia> isequal(float(a//b), a/b)
    true

Constructing infinite rational values is acceptable:

.. doctest::

    julia> 5//0
    1//0

    julia> -3//0
    -1//0

    julia> typeof(ans)
    Rational{Int64} (constructor with 1 method)

Trying to construct a ``NaN`` rational value, however, is not:

.. doctest::

    julia> 0//0
    ERROR: invalid rational: 0//0
     in Rational at rational.jl:6
     in // at rational.jl:15

As usual, the promotion system makes interactions with other numeric
types effortless:

.. doctest::

    julia> 3//5 + 1
    8//5

    julia> 3//5 - 0.5
    0.09999999999999998

    julia> 2//7 * (1 + 2im)
    2//7 + 4//7*im

    julia> 2//7 * (1.5 + 2im)
    0.42857142857142855 + 0.5714285714285714im

    julia> 3//2 / (1 + 2im)
    3//10 - 3//5*im

    julia> 1//2 + 2im
    1//2 + 2//1*im

    julia> 1 + 2//3im
    1//1 - 2//3*im

    julia> 0.5 == 1//2
    true

    julia> 0.33 == 1//3
    false

    julia> 0.33 < 1//3
    true

    julia> 1//3 - 0.33
    0.0033333333333332993