Sophie

Sophie

distrib > Mageia > 4 > x86_64 > by-pkgid > 82fd441cd3f2a8bc33fc3ed41403eced > files > 2032

python-astropy-0.2.4-4.mga4.x86_64.rpm


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Convolution &mdash; Astropy v0.2.4</title>
    
    <link rel="stylesheet" href="../_static/bootstrap-astropy.css" type="text/css" />
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../',
        VERSION:     '0.2.4',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../_static/jquery.js"></script>
    <script type="text/javascript" src="../_static/underscore.js"></script>
    <script type="text/javascript" src="../_static/doctools.js"></script>
    <script type="text/javascript" src="../_static/sidebar.js"></script>
    <link rel="shortcut icon" href="../_static/astropy_logo.ico"/>
    <link rel="top" title="Astropy v0.2.4" href="../index.html" />
    <link rel="up" title="N-dimensional datasets (astropy.nddata)" href="index.html" />
    <link rel="next" title="Subclassing NDData and NDUncertainty" href="subclassing.html" />
    <link rel="prev" title="NDData overview" href="nddata.html" /> 
  </head>
  <body>
<div class="topbar">
  <a class="brand" title="Documentation Home" href="../index.html"></a>
  <ul>
    <li><a class="homelink" title="AstroPy Homepage" href="http://www.astropy.org"></a></li>
    <li><a title="General Index" href="../genindex.html">Index</a></li>
    <li><a title="Python Module Index" href="../py-modindex.html">Modules</a></li>
    <li>
      
      
<form action="../search.html" method="get">
  <input type="text" name="q" placeholder="Search" />
  <input type="hidden" name="check_keywords" value="yes" />
  <input type="hidden" name="area" value="default" />
</form>
      
    </li>
  </ul>
</div>

<div class="related">
    <h3>Navigation</h3>
    <ul>
      <li class="right">
	<a href="subclassing.html" title="Subclassing NDData and NDUncertainty">
	  next &raquo;
	</a>
      </li>
      <li class="right">
	<a href="nddata.html" title="NDData overview">
	  &laquo; previous
	</a>
	 |
      </li>
      <li>
	<a href="../index.html">Astropy v0.2.4</a>
	 &raquo;
      </li>
      <li><a href="index.html" accesskey="U">N-dimensional datasets (<tt class="docutils literal"><span class="pre">astropy.nddata</span></tt>)</a> &raquo;</li>
      
      <li>Convolution</li> 
    </ul>
</div>
  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="convolution">
<h1>Convolution<a class="headerlink" href="#convolution" title="Permalink to this headline">¶</a></h1>
<div class="section" id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<p><tt class="docutils literal"><span class="pre">astropy.nddata</span></tt> includes a convolution function that offers
improvements compared to the scipy <tt class="docutils literal"><span class="pre">astropy.ndimage</span></tt> convolution
routines, including:</p>
<ul class="simple">
<li>Proper treatment of NaN values</li>
<li>A single function for 1-D, 2-D, and 3-D convolution</li>
<li>Improved options for the treatment of edges</li>
<li>Both direct and Fast Fourier Transform (FFT) versions</li>
</ul>
<p>The following thumbnails show the difference between Scipy&#8217;s and
Astropy&#8217;s convolve functions on an Astronomical image that contains NaN
values. Scipy&#8217;s function essentially returns NaN for all pixels that are
within a kernel of any NaN value, which is often not the desired result.</p>
<table border="1" class="docutils">
<colgroup>
<col width="35%" />
<col width="31%" />
<col width="34%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Original</td>
<td>Scipy <tt class="docutils literal"><span class="pre">convolve</span></tt></td>
<td>Astropy <tt class="docutils literal"><span class="pre">convolve</span></tt></td>
</tr>
<tr class="row-even"><td><img alt="original" src="../_images/original.png" /></td>
<td><img alt="scipy" src="../_images/scipy.png" /></td>
<td><img alt="astropy" src="../_images/astropy.png" /></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="usage">
<h2>Usage<a class="headerlink" href="#usage" title="Permalink to this headline">¶</a></h2>
<p>Two convolution functions are provided.  They are imported as:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">astropy.nddata</span> <span class="kn">import</span> <span class="n">convolve</span><span class="p">,</span> <span class="n">convolve_fft</span>
</pre></div>
</div>
<p>and are both used as:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">result</span> <span class="o">=</span> <span class="n">convolve</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">kernel</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">convolve_fft</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">kernel</span><span class="p">)</span>
</pre></div>
</div>
<p><a class="reference internal" href="../_generated/astropy.nddata.convolution.convolve.convolve.html#astropy.nddata.convolution.convolve.convolve" title="astropy.nddata.convolution.convolve.convolve"><tt class="xref py py-obj docutils literal"><span class="pre">convolve</span></tt></a> is implemented as a direct
convolution algorithm, while <a class="reference internal" href="../_generated/astropy.nddata.convolution.convolve.convolve_fft.html#astropy.nddata.convolution.convolve.convolve_fft" title="astropy.nddata.convolution.convolve.convolve_fft"><tt class="xref py py-obj docutils literal"><span class="pre">convolve_fft</span></tt></a>
uses an FFT.  Thus, the former is better for small kernels, while the latter
is much more efficient for larger kernels.</p>
<p>The input images and kernels should be lists or Numpy arrays with either both 1, 2, or 3 dimensions (and the number of dimensions should be the same for the image and kernel). The result is a Numpy array with the same dimensions as the input image.</p>
<p>The <tt class="docutils literal"><span class="pre">convolve</span></tt> function takes an optional <tt class="docutils literal"><span class="pre">boundary=</span></tt> argument describing how to perform the convolution at the edge of the array. The values for <tt class="docutils literal"><span class="pre">boundary</span></tt> can be:</p>
<ul class="simple">
<li><tt class="docutils literal"><span class="pre">None</span></tt>: set the result values to zero where the kernel extends beyond the edge of the array (default)</li>
<li><tt class="docutils literal"><span class="pre">'fill'</span></tt>: set values outside the array boundary to a constant. If this option is specified, the constant should be specified using the <tt class="docutils literal"><span class="pre">fill_value=</span></tt> argument, which defaults to zero.</li>
<li><tt class="docutils literal"><span class="pre">'wrap'</span></tt>: assume that the boundaries are periodic</li>
<li><tt class="docutils literal"><span class="pre">'extend'</span></tt> : set values outside the array to the nearest array value</li>
</ul>
<p>By default, the kernel is not normalized. To normalize it prior to convolution, use:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">result</span> <span class="o">=</span> <span class="n">convolve</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">kernel</span><span class="p">,</span> <span class="n">normalize_kernel</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="examples">
<h2>Examples<a class="headerlink" href="#examples" title="Permalink to this headline">¶</a></h2>
<p>Smooth a 1D array with a custom kernel and no boundary treatment:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">convolve</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">])</span>
<span class="go">array([ 0. ,  3.4,  5. ,  5.6,  5.6,  5.2,  0. ])</span>
</pre></div>
</div>
<p>As above, but using the &#8216;extend&#8217; algorithm for boundaries:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">convolve</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">],</span> <span class="n">boundary</span><span class="o">=</span><span class="s">&#39;extend&#39;</span><span class="p">)</span>
<span class="go">array([ 1.6,  3.6,  5. ,  5.6,  5.6,  6.8,  7.8])</span>
</pre></div>
</div>
<p>If a NaN value is present in the original array, it will be interpolated using the kernel:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">convolve</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">],</span> <span class="n">boundary</span><span class="o">=</span><span class="s">&#39;extend&#39;</span><span class="p">)</span>
<span class="go">array([ 1.6,  3.6,  5. ,  5.9,  6.5,  7.1,  7.8])</span>
</pre></div>
</div>
<p>Kernels and arrays can be specified either as lists or as Numpy arrays. The following examples show how to construct a 1-d array as a list:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">kernel</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">result</span> <span class="o">=</span> <span class="n">convolve</span><span class="p">(</span><span class="n">spectrum</span><span class="p">,</span> <span class="n">kernel</span><span class="p">)</span>
</pre></div>
</div>
<p>a 2-d array as a list:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">kernel</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> \
<span class="go">              [1, 2, 1], \</span>
<span class="go">              [0, 1, 0]]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">result</span> <span class="o">=</span> <span class="n">convolve</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">kernel</span><span class="p">)</span>
</pre></div>
</div>
<p>and a 3-d array as a list:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">kernel</span> <span class="o">=</span> <span class="p">[[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> \
<span class="go">              [[0, 1, 0], [2, 3, 2], [0, 1, 0]], \</span>
<span class="go">              [[0, 0, 0], [0, 2, 0], [0, 0, 0]]]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">result</span> <span class="o">=</span> <span class="n">convolve</span><span class="p">(</span><span class="n">cube</span><span class="p">,</span> <span class="n">kernel</span><span class="p">)</span>
</pre></div>
</div>
<p>You can also use <a class="reference internal" href="../_generated/astropy.nddata.convolution.make_kernel.make_kernel.html#astropy.nddata.convolution.make_kernel.make_kernel" title="astropy.nddata.convolution.make_kernel.make_kernel"><tt class="xref py py-obj docutils literal"><span class="pre">make_kernel</span></tt></a>
to generate common n-dimensional kernels:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">make_kernel</span><span class="p">([</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">],</span> <span class="mi">1</span><span class="p">,</span> <span class="s">&#39;boxcar&#39;</span><span class="p">)</span>
<span class="go">array([[ 0.  0.  0.]</span>
<span class="go">       [ 0.  1.  0.]</span>
<span class="go">       [ 0.  0.  0.]])</span>
</pre></div>
</div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper"><h3>Page Contents</h3>
<ul>
<li><a class="reference internal" href="#">Convolution</a><ul>
<li><a class="reference internal" href="#introduction">Introduction</a></li>
<li><a class="reference internal" href="#usage">Usage</a></li>
<li><a class="reference internal" href="#examples">Examples</a></li>
</ul>
</li>
</ul>


        </div>
      </div>
      <div class="clearer"></div>
    </div>
<footer class="footer">
  <p class="pull-right">
    <a href="http://github.com/astropy/astropy/tree/v0.2.4/docs/nddata/convolution.rst">Edit This Page on Github</a> &nbsp;
    <a href="../_sources/nddata/convolution.txt"
       rel="nofollow">Page Source</a> &nbsp;
    <a href="#">Back to Top</a></p>
  <p>
    &copy; Copyright 2011-2013, The Astropy Developers.<br/>
    Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3. &nbsp;
    Last built 22 Oct 2013. <br/>
  </p>
</footer>
  </body>
</html>