Sophie

Sophie

distrib > Mageia > 4 > x86_64 > by-pkgid > b38d2da330d1936e5ab1307c039c4941 > files > 256

octave-doc-3.6.4-3.mga4.noarch.rpm

<html lang="en">
<head>
<title>Finding Elements and Checking Conditions - GNU Octave</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Octave">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Matrix-Manipulation.html#Matrix-Manipulation" title="Matrix Manipulation">
<link rel="next" href="Rearranging-Matrices.html#Rearranging-Matrices" title="Rearranging Matrices">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="Finding-Elements-and-Checking-Conditions"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="Rearranging-Matrices.html#Rearranging-Matrices">Rearranging Matrices</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Matrix-Manipulation.html#Matrix-Manipulation">Matrix Manipulation</a>
<hr>
</div>

<h3 class="section">16.1 Finding Elements and Checking Conditions</h3>

<p>The functions <code>any</code> and <code>all</code> are useful for determining
whether any or all of the elements of a matrix satisfy some condition. 
The <code>find</code> function is also useful in determining which elements of
a matrix meet a specified condition.

<!-- any src/data.cc -->
   <p><a name="doc_002dany"></a>

<div class="defun">
&mdash; Built-in Function:  <b>any</b> (<var>x</var>)<var><a name="index-any-1606"></a></var><br>
&mdash; Built-in Function:  <b>any</b> (<var>x, dim</var>)<var><a name="index-any-1607"></a></var><br>
<blockquote><p>For a vector argument, return true (logical 1) if any element of the vector
is nonzero.

        <p>For a matrix argument, return a row vector of logical ones and
zeros with each element indicating whether any of the elements of the
corresponding column of the matrix are nonzero.  For example:

     <pre class="example">          any (eye (2, 4))
               &rArr; [ 1, 1, 0, 0 ]
</pre>
        <p>If the optional argument <var>dim</var> is supplied, work along dimension
<var>dim</var>.  For example:

     <pre class="example">          any (eye (2, 4), 2)
               &rArr; [ 1; 1 ]
</pre>
        <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dall.html#doc_002dall">all</a>. 
</p></blockquote></div>

<!-- all src/data.cc -->
   <p><a name="doc_002dall"></a>

<div class="defun">
&mdash; Built-in Function:  <b>all</b> (<var>x</var>)<var><a name="index-all-1608"></a></var><br>
&mdash; Built-in Function:  <b>all</b> (<var>x, dim</var>)<var><a name="index-all-1609"></a></var><br>
<blockquote><p>For a vector argument, return true (logical 1) if all elements of the vector
are nonzero.

        <p>For a matrix argument, return a row vector of logical ones and
zeros with each element indicating whether all of the elements of the
corresponding column of the matrix are nonzero.  For example:

     <pre class="example">          all ([2, 3; 1, 0]))
               &rArr; [ 1, 0 ]
</pre>
        <p>If the optional argument <var>dim</var> is supplied, work along dimension
<var>dim</var>. 
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->

     <p class="noindent"><strong>See also:</strong> <a href="doc_002dany.html#doc_002dany">any</a>. 
</p></blockquote></div>

   <p>Since the comparison operators (see <a href="Comparison-Ops.html#Comparison-Ops">Comparison Ops</a>) return matrices
of ones and zeros, it is easy to test a matrix for many things, not just
whether the elements are nonzero.  For example,

<pre class="example">     all (all (rand (5) &lt; 0.9))
          &rArr; 0
</pre>
   <p class="noindent">tests a random 5 by 5 matrix to see if all of its elements are less
than 0.9.

   <p>Note that in conditional contexts (like the test clause of <code>if</code> and
<code>while</code> statements) Octave treats the test as if you had typed
<code>all (all (condition))</code>.

<!-- xor scripts/miscellaneous/xor.m -->
   <p><a name="doc_002dxor"></a>

<div class="defun">
&mdash; Mapping Function: <var>z</var> = <b>xor</b> (<var>x, y</var>)<var><a name="index-xor-1610"></a></var><br>
<blockquote><p>Return the `exclusive or' of the entries of <var>x</var> and <var>y</var>. 
For boolean expressions <var>x</var> and <var>y</var>,
<code>xor (</code><var>x</var><code>, </code><var>y</var><code>)</code> is true if and only if one of <var>x</var> or
<var>y</var> is true.  Otherwise, for <var>x</var> and <var>y</var> both true or both
false, <code>xor</code> returns false.

        <p>The truth table for the xor operation is

        <p><table summary=""><tr align="left"><td valign="top" width="44%"></td><td valign="top" width="3%"><var>x</var> </td><td valign="top" width="5%"><var>y</var> </td><td valign="top" width="3%"><var>z</var> </td><td valign="top" width="44%">
<br></td></tr><tr align="left"><td valign="top" width="44%"></td><td valign="top" width="3%">0 </td><td valign="top" width="5%">0 </td><td valign="top" width="3%">0 </td><td valign="top" width="44%">
<br></td></tr><tr align="left"><td valign="top" width="44%"></td><td valign="top" width="3%">1 </td><td valign="top" width="5%">0 </td><td valign="top" width="3%">1 </td><td valign="top" width="44%">
<br></td></tr><tr align="left"><td valign="top" width="44%"></td><td valign="top" width="3%">0 </td><td valign="top" width="5%">1 </td><td valign="top" width="3%">1 </td><td valign="top" width="44%">
<br></td></tr><tr align="left"><td valign="top" width="44%"></td><td valign="top" width="3%">1 </td><td valign="top" width="5%">1 </td><td valign="top" width="3%">0 </td><td valign="top" width="44%">
        <br></td></tr></table>

     <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dand.html#doc_002dand">and</a>, <a href="doc_002dor.html#doc_002dor">or</a>, <a href="doc_002dnot.html#doc_002dnot">not</a>. 
</p></blockquote></div>

<!-- diff src/data.cc -->
   <p><a name="doc_002ddiff"></a>

<div class="defun">
&mdash; Built-in Function:  <b>diff</b> (<var>x</var>)<var><a name="index-diff-1611"></a></var><br>
&mdash; Built-in Function:  <b>diff</b> (<var>x, k</var>)<var><a name="index-diff-1612"></a></var><br>
&mdash; Built-in Function:  <b>diff</b> (<var>x, k, dim</var>)<var><a name="index-diff-1613"></a></var><br>
<blockquote><p>If <var>x</var> is a vector of length n, <code>diff (</code><var>x</var><code>)</code> is the
vector of first differences
 <var>x</var>(2) - <var>x</var>(1), <small class="dots">...</small>, <var>x</var>(n) - <var>x</var>(n-1).

        <p>If <var>x</var> is a matrix, <code>diff (</code><var>x</var><code>)</code> is the matrix of column
differences along the first non-singleton dimension.

        <p>The second argument is optional.  If supplied, <code>diff (</code><var>x</var><code>,
</code><var>k</var><code>)</code>, where <var>k</var> is a non-negative integer, returns the
<var>k</var>-th differences.  It is possible that <var>k</var> is larger than
the first non-singleton dimension of the matrix.  In this case,
<code>diff</code> continues to take the differences along the next
non-singleton dimension.

        <p>The dimension along which to take the difference can be explicitly
stated with the optional variable <var>dim</var>.  In this case the
<var>k</var>-th order differences are calculated along this dimension. 
In the case where <var>k</var> exceeds <code>size (</code><var>x</var><code>, </code><var>dim</var><code>)</code>
an empty matrix is returned. 
</p></blockquote></div>

<!-- isinf src/mappers.cc -->
   <p><a name="doc_002disinf"></a>

<div class="defun">
&mdash; Mapping Function:  <b>isinf</b> (<var>x</var>)<var><a name="index-isinf-1614"></a></var><br>
<blockquote><p>Return a logical array which is true where the elements of <var>x</var> are
are infinite and false where they are not. 
For example:

     <pre class="example">          isinf ([13, Inf, NA, NaN])
               &rArr; [ 0, 1, 0, 0 ]
</pre>
        <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002disfinite.html#doc_002disfinite">isfinite</a>, <a href="doc_002disnan.html#doc_002disnan">isnan</a>, <a href="doc_002disna.html#doc_002disna">isna</a>. 
</p></blockquote></div>

<!-- isnan src/mappers.cc -->
   <p><a name="doc_002disnan"></a>

<div class="defun">
&mdash; Mapping Function:  <b>isnan</b> (<var>x</var>)<var><a name="index-isnan-1615"></a></var><br>
<blockquote><p>Return a logical array which is true where the elements of <var>x</var> are
NaN values and false where they are not. 
NA values are also considered NaN values.  For example:

     <pre class="example">          isnan ([13, Inf, NA, NaN])
               &rArr; [ 0, 0, 1, 1 ]
</pre>
        <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002disna.html#doc_002disna">isna</a>, <a href="doc_002disinf.html#doc_002disinf">isinf</a>, <a href="doc_002disfinite.html#doc_002disfinite">isfinite</a>. 
</p></blockquote></div>

<!-- isfinite src/mappers.cc -->
   <p><a name="doc_002disfinite"></a>

<div class="defun">
&mdash; Mapping Function:  <b>isfinite</b> (<var>x</var>)<var><a name="index-isfinite-1616"></a></var><br>
&mdash; Mapping Function:  <b>finite</b> (<var>x</var>)<var><a name="index-finite-1617"></a></var><br>
<blockquote><p>Return a logical array which is true where the elements of <var>x</var> are
finite values and false where they are not. 
For example:

     <pre class="example">          finite ([13, Inf, NA, NaN])
               &rArr; [ 1, 0, 0, 0 ]
</pre>
        <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002disinf.html#doc_002disinf">isinf</a>, <a href="doc_002disnan.html#doc_002disnan">isnan</a>, <a href="doc_002disna.html#doc_002disna">isna</a>. 
</p></blockquote></div>

<!-- common_size scripts/general/common_size.m -->
   <p><a name="doc_002dcommon_005fsize"></a>

<div class="defun">
&mdash; Function File: [<var>err</var>, <var>y1</var>, <small class="dots">...</small>] = <b>common_size</b> (<var>x1, <small class="dots">...</small></var>)<var><a name="index-common_005fsize-1618"></a></var><br>
<blockquote><p>Determine if all input arguments are either scalar or of common
size.  If so, <var>err</var> is zero, and <var>yi</var> is a matrix of the
common size with all entries equal to <var>xi</var> if this is a scalar or
<var>xi</var> otherwise.  If the inputs cannot be brought to a common size,
<var>err</var> is 1, and <var>yi</var> is <var>xi</var>.  For example:

     <pre class="example">          [errorcode, a, b] = common_size ([1 2; 3 4], 5)
               &rArr; errorcode = 0
               &rArr; a = [ 1, 2; 3, 4 ]
               &rArr; b = [ 5, 5; 5, 5 ]
</pre>
        <p class="noindent">This is useful for implementing functions where arguments can either
be scalars or of common size. 
</p></blockquote></div>

<!-- find src/DLD-FUNCTIONS/find.cc -->
   <p><a name="doc_002dfind"></a>

<div class="defun">
&mdash; Loadable Function: <var>idx</var> = <b>find</b> (<var>x</var>)<var><a name="index-find-1619"></a></var><br>
&mdash; Loadable Function: <var>idx</var> = <b>find</b> (<var>x, n</var>)<var><a name="index-find-1620"></a></var><br>
&mdash; Loadable Function: <var>idx</var> = <b>find</b> (<var>x, n, direction</var>)<var><a name="index-find-1621"></a></var><br>
&mdash; Loadable Function: [i, j] = <b>find</b> (<var><small class="dots">...</small></var>)<var><a name="index-find-1622"></a></var><br>
&mdash; Loadable Function: [i, j, v] = <b>find</b> (<var><small class="dots">...</small></var>)<var><a name="index-find-1623"></a></var><br>
<blockquote><p>Return a vector of indices of nonzero elements of a matrix, as a row if
<var>x</var> is a row vector or as a column otherwise.  To obtain a single index
for each matrix element, Octave pretends that the columns of a matrix form
one long vector (like Fortran arrays are stored).  For example:

     <pre class="example">          find (eye (2))
               &rArr; [ 1; 4 ]
</pre>
        <p>If two outputs are requested, <code>find</code> returns the row and column
indices of nonzero elements of a matrix.  For example:

     <pre class="example">          [i, j] = find (2 * eye (2))
               &rArr; i = [ 1; 2 ]
               &rArr; j = [ 1; 2 ]
</pre>
        <p>If three outputs are requested, <code>find</code> also returns a vector
containing the nonzero values.  For example:

     <pre class="example">          [i, j, v] = find (3 * eye (2))
               &rArr; i = [ 1; 2 ]
               &rArr; j = [ 1; 2 ]
               &rArr; v = [ 3; 3 ]
</pre>
        <p>If two inputs are given, <var>n</var> indicates the maximum number of
elements to find from the beginning of the matrix or vector.

        <p>If three inputs are given, <var>direction</var> should be one of "first" or
"last", requesting only the first or last <var>n</var> indices, respectively. 
However, the indices are always returned in ascending order.

        <p>Note that this function is particularly useful for sparse matrices, as
it extracts the non-zero elements as vectors, which can then be used to
create the original matrix.  For example:

     <pre class="example">          sz = size (a);
          [i, j, v] = find (a);
          b = sparse (i, j, v, sz(1), sz(2));
</pre>
        <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dnonzeros.html#doc_002dnonzeros">nonzeros</a>. 
</p></blockquote></div>

<!-- lookup src/DLD-FUNCTIONS/lookup.cc -->
   <p><a name="doc_002dlookup"></a>

<div class="defun">
&mdash; Loadable Function: <var>idx</var> = <b>lookup</b> (<var>table, y</var>)<var><a name="index-lookup-1624"></a></var><br>
&mdash; Loadable Function: <var>idx</var> = <b>lookup</b> (<var>table, y, opt</var>)<var><a name="index-lookup-1625"></a></var><br>
<blockquote><p>Lookup values in a sorted table.  Usually used as a prelude to
interpolation.

        <p>If table is increasing and <code>idx = lookup (table, y)</code>, then
<code>table(idx(i)) &lt;= y(i) &lt; table(idx(i+1))</code> for all <code>y(i)</code>
within the table.  If <code>y(i) &lt; table(1)</code> then
<code>idx(i)</code> is 0. If <code>y(i) &gt;= table(end)</code> or <code>isnan (y(i))</code> then
<code>idx(i)</code> is <code>n</code>.

        <p>If the table is decreasing, then the tests are reversed. 
For non-strictly monotonic tables, empty intervals are always skipped. 
The result is undefined if <var>table</var> is not monotonic, or if
<var>table</var> contains a NaN.

        <p>The complexity of the lookup is O(M*log(N)) where N is the size of
<var>table</var> and M is the size of <var>y</var>.  In the special case when <var>y</var>
is also sorted, the complexity is O(min(M*log(N),M+N)).

        <p><var>table</var> and <var>y</var> can also be cell arrays of strings
(or <var>y</var> can be a single string).  In this case, string lookup
is performed using lexicographical comparison.

        <p>If <var>opts</var> is specified, it must be a string with letters indicating
additional options.

          <dl>
<dt><code>m</code><dd><code>table(idx(i)) == val(i)</code> if <code>val(i)</code>
occurs in table; otherwise, <code>idx(i)</code> is zero.

          <br><dt><code>b</code><dd><code>idx(i)</code> is a logical 1 or 0, indicating whether
<code>val(i)</code> is contained in table or not.

          <br><dt><code>l</code><dd>For numeric lookups
the leftmost subinterval shall be extended to infinity (i.e., all indices
at least 1)

          <br><dt><code>r</code><dd>For numeric lookups
the rightmost subinterval shall be extended to infinity (i.e., all indices
at most n-1). 
</dl>
        </p></blockquote></div>

   <p>If you wish to check if a variable exists at all, instead of properties
its elements may have, consult <a href="Status-of-Variables.html#Status-of-Variables">Status of Variables</a>.

   </body></html>