Sophie

Sophie

distrib > Mageia > 4 > x86_64 > by-pkgid > e16b1fb69a3f2ddbb03f004e9641ad33 > files > 65

python-networkx-doc-1.8.1-3.mga4.noarch.rpm



<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>networkx.algorithms.connectivity.connectivity &mdash; NetworkX 1.8.1 documentation</title>
    
    <link rel="stylesheet" href="../../../../_static/networkx.css" type="text/css" />
    <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../../../',
        VERSION:     '1.8.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  false
      };
    </script>
    <script type="text/javascript" src="../../../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../../../_static/doctools.js"></script>
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 1.8.1 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="top" title="NetworkX 1.8.1 documentation" href="../../../../index.html" />
    <link rel="up" title="networkx" href="../../../networkx.html" /> 
  </head>
  <body>
<div style="color: black;background-color: white; font-size: 3.2em; text-align: left; padding: 15px 10px 10px 15px">
NetworkX
</div>

    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li><a href="http://networkx.github.com/">NetworkX Home </a> |&nbsp;</li>
        <li><a href="http://networkx.github.com/documentation.html">Documentation </a>|&nbsp;</li>
        <li><a href="http://networkx.github.com/download.html">Download </a> |&nbsp;</li>
        <li><a href="http://github.com/networkx">Developer (Github)</a></li>



          <li><a href="../../../index.html" >Module code</a> &raquo;</li>
          <li><a href="../../../networkx.html" accesskey="U">networkx</a> &raquo;</li> 
      </ul>
    </div>



      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="../../../../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <h1>Source code for networkx.algorithms.connectivity.connectivity</h1><div class="highlight"><pre>
<span class="c"># -*- coding: utf-8 -*-</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Flow based connectivity algorithms</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">itertools</span>
<span class="kn">import</span> <span class="nn">networkx</span> <span class="kn">as</span> <span class="nn">nx</span>

<span class="n">__author__</span> <span class="o">=</span> <span class="s">&#39;</span><span class="se">\n</span><span class="s">&#39;</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="s">&#39;Jordi Torrents &lt;jtorrents@milnou.net&gt;&#39;</span><span class="p">])</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span> <span class="s">&#39;average_node_connectivity&#39;</span><span class="p">,</span>
            <span class="s">&#39;local_node_connectivity&#39;</span><span class="p">,</span>
            <span class="s">&#39;node_connectivity&#39;</span><span class="p">,</span>
            <span class="s">&#39;local_edge_connectivity&#39;</span><span class="p">,</span>
            <span class="s">&#39;edge_connectivity&#39;</span><span class="p">,</span>
            <span class="s">&#39;all_pairs_node_connectivity_matrix&#39;</span><span class="p">,</span>
            <span class="s">&#39;dominating_set&#39;</span><span class="p">,</span>
            <span class="p">]</span>

<div class="viewcode-block" id="average_node_connectivity"><a class="viewcode-back" href="../../../../reference/generated/networkx.algorithms.connectivity.connectivity.average_node_connectivity.html#networkx.algorithms.connectivity.connectivity.average_node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">average_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Returns the average connectivity of a graph G.</span>

<span class="sd">    The average connectivity `\bar{\kappa}` of a graph G is the average </span>
<span class="sd">    of local node connectivity over all pairs of nodes of G [1]_ .</span>

<span class="sd">    .. math::</span>

<span class="sd">        \bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>

<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : float</span>
<span class="sd">        Average node connectivity</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    local_node_connectivity</span>
<span class="sd">    node_connectivity</span>
<span class="sd">    local_edge_connectivity</span>
<span class="sd">    edge_connectivity</span>
<span class="sd">    max_flow</span>
<span class="sd">    ford_fulkerson </span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1]  Beineke, L., O. Oellermann, and R. Pippert (2002). The average </span>
<span class="sd">            connectivity of a graph. Discrete mathematics 252(1-3), 31-45.</span>
<span class="sd">            http://www.sciencedirect.com/science/article/pii/S0012365X01001807</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">permutations</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">combinations</span>

    <span class="n">H</span><span class="p">,</span> <span class="n">mapping</span> <span class="o">=</span> <span class="n">_aux_digraph_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">num</span> <span class="o">=</span> <span class="mf">0.</span>
    <span class="n">den</span> <span class="o">=</span> <span class="mf">0.</span>
    <span class="k">for</span> <span class="n">u</span><span class="p">,</span><span class="n">v</span> <span class="ow">in</span> <span class="n">iter_func</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span>
        <span class="n">den</span> <span class="o">+=</span> <span class="mi">1</span>
        <span class="n">num</span> <span class="o">+=</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="n">H</span><span class="p">,</span> <span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">)</span>
    
    <span class="k">if</span> <span class="n">den</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span> <span class="c"># Null Graph</span>
        <span class="k">return</span> <span class="mi">0</span>
    <span class="k">return</span> <span class="n">num</span><span class="o">/</span><span class="n">den</span>
</div>
<span class="k">def</span> <span class="nf">_aux_digraph_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot; Creates a directed graph D from an undirected graph G to compute flow</span>
<span class="sd">    based node connectivity.</span>

<span class="sd">    For an undirected graph G having `n` nodes and `m` edges we derive a </span>
<span class="sd">    directed graph D with 2n nodes and 2m+n arcs by replacing each </span>
<span class="sd">    original node `v` with two nodes `vA`,`vB` linked by an (internal) </span>
<span class="sd">    arc in D. Then for each edge (u,v) in G we add two arcs (uB,vA) </span>
<span class="sd">    and (vB,uA) in D. Finally we set the attribute capacity = 1 for each </span>
<span class="sd">    arc in D [1].</span>

<span class="sd">    For a directed graph having `n` nodes and `m` arcs we derive a </span>
<span class="sd">    directed graph D with 2n nodes and m+n arcs by replacing each </span>
<span class="sd">    original node `v` with two nodes `vA`,`vB` linked by an (internal) </span>
<span class="sd">    arc `(vA,vB)` in D. Then for each arc (u,v) in G we add one arc (uB,vA) </span>
<span class="sd">    in D. Finally we set the attribute capacity = 1 for each arc in D.</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and </span>
<span class="sd">        Erlebach, &#39;Network Analysis: Methodological Foundations&#39;, Lecture </span>
<span class="sd">        Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. </span>
<span class="sd">        http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf</span>
<span class="sd"> </span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">directed</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">()</span>

    <span class="n">mapping</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">D</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">DiGraph</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">node</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
        <span class="n">mapping</span><span class="p">[</span><span class="n">node</span><span class="p">]</span> <span class="o">=</span> <span class="n">i</span>
        <span class="n">D</span><span class="o">.</span><span class="n">add_node</span><span class="p">(</span><span class="s">&#39;</span><span class="si">%d</span><span class="s">A&#39;</span> <span class="o">%</span> <span class="n">i</span><span class="p">,</span><span class="nb">id</span><span class="o">=</span><span class="n">node</span><span class="p">)</span>
        <span class="n">D</span><span class="o">.</span><span class="n">add_node</span><span class="p">(</span><span class="s">&#39;</span><span class="si">%d</span><span class="s">B&#39;</span> <span class="o">%</span> <span class="n">i</span><span class="p">,</span><span class="nb">id</span><span class="o">=</span><span class="n">node</span><span class="p">)</span>
        <span class="n">D</span><span class="o">.</span><span class="n">add_edge</span><span class="p">(</span><span class="s">&#39;</span><span class="si">%d</span><span class="s">A&#39;</span> <span class="o">%</span> <span class="n">i</span><span class="p">,</span> <span class="s">&#39;</span><span class="si">%d</span><span class="s">B&#39;</span> <span class="o">%</span> <span class="n">i</span><span class="p">,</span> <span class="n">capacity</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    
    <span class="n">edges</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="p">(</span><span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span> <span class="ow">in</span> <span class="n">G</span><span class="o">.</span><span class="n">edges</span><span class="p">():</span>
        <span class="n">edges</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="s">&#39;</span><span class="si">%s</span><span class="s">B&#39;</span> <span class="o">%</span> <span class="n">mapping</span><span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="s">&#39;</span><span class="si">%s</span><span class="s">A&#39;</span> <span class="o">%</span> <span class="n">mapping</span><span class="p">[</span><span class="n">target</span><span class="p">]))</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">directed</span><span class="p">:</span>
            <span class="n">edges</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="s">&#39;</span><span class="si">%s</span><span class="s">B&#39;</span> <span class="o">%</span> <span class="n">mapping</span><span class="p">[</span><span class="n">target</span><span class="p">],</span> <span class="s">&#39;</span><span class="si">%s</span><span class="s">A&#39;</span> <span class="o">%</span> <span class="n">mapping</span><span class="p">[</span><span class="n">source</span><span class="p">]))</span>
    
    <span class="n">D</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">(</span><span class="n">edges</span><span class="p">,</span> <span class="n">capacity</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">D</span><span class="p">,</span> <span class="n">mapping</span>

<div class="viewcode-block" id="local_node_connectivity"><a class="viewcode-back" href="../../../../reference/generated/networkx.algorithms.connectivity.connectivity.local_node_connectivity.html#networkx.algorithms.connectivity.connectivity.local_node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">mapping</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Computes local node connectivity for nodes s and t.</span>

<span class="sd">    Local node connectivity for two non adjacent nodes s and t is the</span>
<span class="sd">    minimum number of nodes that must be removed (along with their incident </span>
<span class="sd">    edges) to disconnect them.</span>

<span class="sd">    This is a flow based implementation of node connectivity. We compute the</span>
<span class="sd">    maximum flow on an auxiliary digraph build from the original input</span>
<span class="sd">    graph (see below for details). This is equal to the local node </span>
<span class="sd">    connectivity because the value of a maximum s-t-flow is equal to the </span>
<span class="sd">    capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node</span>

<span class="sd">    aux_digraph : NetworkX DiGraph (default=None)</span>
<span class="sd">        Auxiliary digraph to compute flow based node connectivity. If None</span>
<span class="sd">        the auxiliary digraph is build.</span>

<span class="sd">    mapping : dict (default=None)</span>
<span class="sd">        Dictionary with a mapping of node names in G and in the auxiliary digraph.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        local node connectivity for nodes s and t</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Platonic icosahedral graph has node connectivity 5 </span>
<span class="sd">    &gt;&gt;&gt; # for each non adjacent node pair</span>
<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; nx.local_node_connectivity(G,0,6)</span>
<span class="sd">    5</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of node connectivity. We compute the</span>
<span class="sd">    maximum flow using the Ford and Fulkerson algorithm on an auxiliary digraph </span>
<span class="sd">    build from the original input graph:</span>

<span class="sd">    For an undirected graph G having `n` nodes and `m` edges we derive a </span>
<span class="sd">    directed graph D with 2n nodes and 2m+n arcs by replacing each </span>
<span class="sd">    original node `v` with two nodes `v_A`, `v_B` linked by an (internal) </span>
<span class="sd">    arc in `D`. Then for each edge (`u`, `v`) in G we add two arcs </span>
<span class="sd">    (`u_B`, `v_A`) and (`v_B`, `u_A`) in `D`. Finally we set the attribute </span>
<span class="sd">    capacity = 1 for each arc in `D` [1]_ .</span>

<span class="sd">    For a directed graph G having `n` nodes and `m` arcs we derive a </span>
<span class="sd">    directed graph `D` with `2n` nodes and `m+n` arcs by replacing each </span>
<span class="sd">    original node `v` with two nodes `v_A`, `v_B` linked by an (internal) </span>
<span class="sd">    arc `(v_A, v_B)` in D. Then for each arc `(u,v)` in G we add one arc </span>
<span class="sd">    `(u_B,v_A)` in `D`. Finally we set the attribute capacity = 1 for </span>
<span class="sd">    each arc in `D`.</span>

<span class="sd">    This is equal to the local node connectivity because the value of </span>
<span class="sd">    a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford </span>
<span class="sd">    and Fulkerson theorem).</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    node_connectivity</span>
<span class="sd">    all_pairs_node_connectivity_matrix</span>
<span class="sd">    local_edge_connectivity</span>
<span class="sd">    edge_connectivity</span>
<span class="sd">    max_flow</span>
<span class="sd">    ford_fulkerson </span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and </span>
<span class="sd">        Erlebach, &#39;Network Analysis: Methodological Foundations&#39;, Lecture </span>
<span class="sd">        Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. </span>
<span class="sd">        http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf</span>
<span class="sd">    </span>
<span class="sd">    &quot;&quot;&quot;</span> 
    <span class="k">if</span> <span class="n">aux_digraph</span> <span class="ow">is</span> <span class="bp">None</span> <span class="ow">or</span> <span class="n">mapping</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
        <span class="n">H</span><span class="p">,</span> <span class="n">mapping</span> <span class="o">=</span> <span class="n">_aux_digraph_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">aux_digraph</span> 
    <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">max_flow</span><span class="p">(</span><span class="n">H</span><span class="p">,</span><span class="s">&#39;</span><span class="si">%s</span><span class="s">B&#39;</span> <span class="o">%</span> <span class="n">mapping</span><span class="p">[</span><span class="n">s</span><span class="p">],</span> <span class="s">&#39;</span><span class="si">%s</span><span class="s">A&#39;</span> <span class="o">%</span> <span class="n">mapping</span><span class="p">[</span><span class="n">t</span><span class="p">])</span>
</div>
<div class="viewcode-block" id="node_connectivity"><a class="viewcode-back" href="../../../../reference/generated/networkx.algorithms.connectivity.connectivity.node_connectivity.html#networkx.algorithms.connectivity.connectivity.node_connectivity">[docs]</a><span class="k">def</span> <span class="nf">node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">t</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Returns node connectivity for a graph or digraph G.</span>

<span class="sd">    Node connectivity is equal to the minimum number of nodes that </span>
<span class="sd">    must be removed to disconnect G or render it trivial. If source </span>
<span class="sd">    and target nodes are provided, this function returns the local node</span>
<span class="sd">    connectivity: the minimum number of nodes that must be removed to break</span>
<span class="sd">    all paths from source to target in G.</span>

<span class="sd">    This is a flow based implementation. The algorithm is based in </span>
<span class="sd">    solving a number of max-flow problems (ie local st-node connectivity, </span>
<span class="sd">    see local_node_connectivity) to determine the capacity of the</span>
<span class="sd">    minimum cut on an auxiliary directed network that corresponds to the </span>
<span class="sd">    minimum node cut of G. It handles both directed and undirected graphs.</span>
<span class="sd">   </span>
<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node. Optional (default=None)</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node. Optional (default=None)</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        Node connectivity of G, or local node connectivity if source </span>
<span class="sd">        and target were provided</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Platonic icosahedral graph is 5-node-connected </span>
<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; nx.node_connectivity(G)</span>
<span class="sd">    5</span>
<span class="sd">    &gt;&gt;&gt; nx.node_connectivity(G, 3, 7)</span>
<span class="sd">    5</span>
<span class="sd">    </span>
<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of node connectivity. The </span>
<span class="sd">    algorithm works by solving `O((n-\delta-1+\delta(\delta-1)/2)` max-flow </span>
<span class="sd">    problems on an auxiliary digraph. Where `\delta` is the minimum degree </span>
<span class="sd">    of G. For details about the auxiliary digraph and the computation of</span>
<span class="sd">    local node connectivity see local_node_connectivity.</span>

<span class="sd">    This implementation is based on algorithm 11 in [1]_. We use the Ford </span>
<span class="sd">    and Fulkerson algorithm to compute max flow (see ford_fulkerson).</span>
<span class="sd">    </span>
<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    local_node_connectivity</span>
<span class="sd">    all_pairs_node_connectivity_matrix</span>
<span class="sd">    local_edge_connectivity</span>
<span class="sd">    edge_connectivity</span>
<span class="sd">    max_flow</span>
<span class="sd">    ford_fulkerson </span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. </span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c"># Local node connectivity</span>
    <span class="k">if</span> <span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&#39;node </span><span class="si">%s</span><span class="s"> not in graph&#39;</span> <span class="o">%</span> <span class="n">s</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">t</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&#39;node </span><span class="si">%s</span><span class="s"> not in graph&#39;</span> <span class="o">%</span> <span class="n">t</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span>
    <span class="c"># Global node connectivity</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_weakly_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">permutations</span>
        <span class="c"># I think that it is necessary to consider both predecessors</span>
        <span class="c"># and successors for directed graphs</span>
        <span class="k">def</span> <span class="nf">neighbors</span><span class="p">(</span><span class="n">v</span><span class="p">):</span>
            <span class="k">return</span> <span class="n">itertools</span><span class="o">.</span><span class="n">chain</span><span class="o">.</span><span class="n">from_iterable</span><span class="p">([</span><span class="n">G</span><span class="o">.</span><span class="n">predecessors_iter</span><span class="p">(</span><span class="n">v</span><span class="p">),</span>
                                                  <span class="n">G</span><span class="o">.</span><span class="n">successors_iter</span><span class="p">(</span><span class="n">v</span><span class="p">)])</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="n">iter_func</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">combinations</span>
        <span class="n">neighbors</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">neighbors_iter</span>
    <span class="c"># Initial guess \kappa = n - 1</span>
    <span class="n">K</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">order</span><span class="p">()</span><span class="o">-</span><span class="mi">1</span>
    <span class="n">deg</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">()</span>
    <span class="n">min_deg</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">deg</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
    <span class="n">v</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span><span class="p">,</span><span class="n">d</span> <span class="ow">in</span> <span class="n">deg</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">d</span><span class="o">==</span><span class="n">min_deg</span><span class="p">)</span>
    <span class="c"># Reuse the auxiliary digraph</span>
    <span class="n">H</span><span class="p">,</span> <span class="n">mapping</span> <span class="o">=</span> <span class="n">_aux_digraph_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="c"># compute local node connectivity with all non-neighbors nodes</span>
    <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">-</span> <span class="nb">set</span><span class="p">(</span><span class="n">neighbors</span><span class="p">(</span><span class="n">v</span><span class="p">))</span> <span class="o">-</span> <span class="nb">set</span><span class="p">([</span><span class="n">v</span><span class="p">]):</span>
        <span class="n">K</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">K</span><span class="p">,</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> 
                                            <span class="n">aux_digraph</span><span class="o">=</span><span class="n">H</span><span class="p">,</span> <span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">))</span>
    <span class="c"># Same for non adjacent pairs of neighbors of v</span>
    <span class="k">for</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="n">iter_func</span><span class="p">(</span><span class="n">neighbors</span><span class="p">(</span><span class="n">v</span><span class="p">),</span> <span class="mi">2</span><span class="p">):</span>
        <span class="k">if</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">x</span><span class="p">]:</span> <span class="k">continue</span>
        <span class="n">K</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">K</span><span class="p">,</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> 
                                            <span class="n">aux_digraph</span><span class="o">=</span><span class="n">H</span><span class="p">,</span> <span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">K</span>
</div>
<div class="viewcode-block" id="all_pairs_node_connectivity_matrix"><a class="viewcode-back" href="../../../../reference/generated/networkx.algorithms.connectivity.connectivity.all_pairs_node_connectivity_matrix.html#networkx.algorithms.connectivity.connectivity.all_pairs_node_connectivity_matrix">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_node_connectivity_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Return a numpy 2d ndarray with node connectivity between all pairs</span>
<span class="sd">    of nodes.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected graph</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : 2d numpy ndarray</span>
<span class="sd">         node connectivity between all pairs of nodes.</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    local_node_connectivity</span>
<span class="sd">    node_connectivity</span>
<span class="sd">    local_edge_connectivity</span>
<span class="sd">    edge_connectivity</span>
<span class="sd">    max_flow</span>
<span class="sd">    ford_fulkerson </span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="kn">import</span> <span class="nn">numpy</span>
    <span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span>
        <span class="k">raise</span> <span class="ne">ImportError</span><span class="p">(</span>\
            <span class="s">&quot;all_pairs_node_connectivity_matrix() requires NumPy&quot;</span><span class="p">)</span>

    <span class="n">n</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">order</span><span class="p">()</span>
    <span class="n">M</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">n</span><span class="p">,</span> <span class="n">n</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
    <span class="c"># Create auxiliary Digraph</span>
    <span class="n">D</span><span class="p">,</span> <span class="n">mapping</span> <span class="o">=</span> <span class="n">_aux_digraph_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">permutations</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span>
            <span class="n">K</span> <span class="o">=</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="n">D</span><span class="p">,</span> <span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">)</span>
            <span class="n">M</span><span class="p">[</span><span class="n">mapping</span><span class="p">[</span><span class="n">u</span><span class="p">],</span><span class="n">mapping</span><span class="p">[</span><span class="n">v</span><span class="p">]]</span> <span class="o">=</span> <span class="n">K</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">combinations</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span>
            <span class="n">K</span> <span class="o">=</span> <span class="n">local_node_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="n">D</span><span class="p">,</span> <span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">)</span>
            <span class="n">M</span><span class="p">[</span><span class="n">mapping</span><span class="p">[</span><span class="n">u</span><span class="p">],</span><span class="n">mapping</span><span class="p">[</span><span class="n">v</span><span class="p">]]</span> <span class="o">=</span> <span class="n">M</span><span class="p">[</span><span class="n">mapping</span><span class="p">[</span><span class="n">v</span><span class="p">],</span><span class="n">mapping</span><span class="p">[</span><span class="n">u</span><span class="p">]]</span> <span class="o">=</span> <span class="n">K</span>

    <span class="k">return</span> <span class="n">M</span>
</div>
<span class="k">def</span> <span class="nf">_aux_digraph_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Auxiliary digraph for computing flow based edge connectivity</span>
<span class="sd">    </span>
<span class="sd">    If the input graph is undirected, we replace each edge (u,v) with</span>
<span class="sd">    two reciprocal arcs (u,v) and (v,u) and then we set the attribute </span>
<span class="sd">    &#39;capacity&#39; for each arc to 1. If the input graph is directed we simply</span>
<span class="sd">    add the &#39;capacity&#39; attribute. Part of algorithm 1 in [1]_ .</span>
<span class="sd">    </span>
<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a </span>
<span class="sd">        chapter, look for the reference of the book).</span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="k">if</span> <span class="n">nx</span><span class="o">.</span><span class="n">get_edge_attributes</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="s">&#39;capacity&#39;</span><span class="p">):</span>
            <span class="k">return</span> <span class="n">G</span>
        <span class="n">D</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
        <span class="n">capacity</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">((</span><span class="n">e</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">D</span><span class="o">.</span><span class="n">edges</span><span class="p">())</span>
        <span class="n">nx</span><span class="o">.</span><span class="n">set_edge_attributes</span><span class="p">(</span><span class="n">D</span><span class="p">,</span> <span class="s">&#39;capacity&#39;</span><span class="p">,</span> <span class="n">capacity</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">D</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">D</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">to_directed</span><span class="p">()</span>
        <span class="n">capacity</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">((</span><span class="n">e</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">D</span><span class="o">.</span><span class="n">edges</span><span class="p">())</span>
        <span class="n">nx</span><span class="o">.</span><span class="n">set_edge_attributes</span><span class="p">(</span><span class="n">D</span><span class="p">,</span> <span class="s">&#39;capacity&#39;</span><span class="p">,</span> <span class="n">capacity</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">D</span>

<div class="viewcode-block" id="local_edge_connectivity"><a class="viewcode-back" href="../../../../reference/generated/networkx.algorithms.connectivity.connectivity.local_edge_connectivity.html#networkx.algorithms.connectivity.connectivity.local_edge_connectivity">[docs]</a><span class="k">def</span> <span class="nf">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Returns local edge connectivity for nodes s and t in G.</span>

<span class="sd">    Local edge connectivity for two nodes s and t is the minimum number </span>
<span class="sd">    of edges that must be removed to disconnect them.     </span>

<span class="sd">    This is a flow based implementation of edge connectivity. We compute the</span>
<span class="sd">    maximum flow on an auxiliary digraph build from the original</span>
<span class="sd">    network (see below for details). This is equal to the local edge </span>
<span class="sd">    connectivity because the value of a maximum s-t-flow is equal to the </span>
<span class="sd">    capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected or directed graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node</span>

<span class="sd">    aux_digraph : NetworkX DiGraph (default=None)</span>
<span class="sd">        Auxiliary digraph to compute flow based edge connectivity. If None</span>
<span class="sd">        the auxiliary digraph is build.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        local edge connectivity for nodes s and t</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Platonic icosahedral graph has edge connectivity 5 </span>
<span class="sd">    &gt;&gt;&gt; # for each non adjacent node pair</span>
<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; nx.local_edge_connectivity(G,0,6)</span>
<span class="sd">    5</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of edge connectivity. We compute the</span>
<span class="sd">    maximum flow using the Ford and Fulkerson algorithm on an auxiliary digraph </span>
<span class="sd">    build from the original graph:</span>

<span class="sd">    If the input graph is undirected, we replace each edge (u,v) with</span>
<span class="sd">    two reciprocal arcs `(u,v)` and `(v,u)` and then we set the attribute </span>
<span class="sd">    &#39;capacity&#39; for each arc to 1. If the input graph is directed we simply</span>
<span class="sd">    add the &#39;capacity&#39; attribute. This is an implementation of algorithm 1 </span>
<span class="sd">    in [1]_.</span>
<span class="sd">    </span>
<span class="sd">    The maximum flow in the auxiliary network is equal to the local edge </span>
<span class="sd">    connectivity because the value of a maximum s-t-flow is equal to the </span>
<span class="sd">    capacity of a minimum s-t-cut (Ford and Fulkerson theorem).</span>

<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    local_node_connectivity</span>
<span class="sd">    node_connectivity</span>
<span class="sd">    edge_connectivity</span>
<span class="sd">    max_flow</span>
<span class="sd">    ford_fulkerson </span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.</span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>
<span class="sd"> </span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">aux_digraph</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> 
        <span class="n">H</span> <span class="o">=</span> <span class="n">_aux_digraph_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">aux_digraph</span>
    <span class="k">return</span> <span class="n">nx</span><span class="o">.</span><span class="n">max_flow</span><span class="p">(</span><span class="n">H</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
</div>
<div class="viewcode-block" id="edge_connectivity"><a class="viewcode-back" href="../../../../reference/generated/networkx.algorithms.connectivity.connectivity.edge_connectivity.html#networkx.algorithms.connectivity.connectivity.edge_connectivity">[docs]</a><span class="k">def</span> <span class="nf">edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">t</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Returns the edge connectivity of the graph or digraph G.</span>

<span class="sd">    The edge connectivity is equal to the minimum number of edges that </span>
<span class="sd">    must be removed to disconnect G or render it trivial. If source </span>
<span class="sd">    and target nodes are provided, this function returns the local edge</span>
<span class="sd">    connectivity: the minimum number of edges that must be removed to </span>
<span class="sd">    break all paths from source to target in G.</span>
<span class="sd">    </span>
<span class="sd">    This is a flow based implementation. The algorithm is based in solving </span>
<span class="sd">    a number of max-flow problems (ie local st-edge connectivity, see </span>
<span class="sd">    local_edge_connectivity) to determine the capacity of the minimum </span>
<span class="sd">    cut on an auxiliary directed network that corresponds to the minimum </span>
<span class="sd">    edge cut of G. It handles both directed and undirected graphs.</span>
<span class="sd"> </span>
<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        Undirected or directed graph</span>

<span class="sd">    s : node</span>
<span class="sd">        Source node. Optional (default=None)</span>

<span class="sd">    t : node</span>
<span class="sd">        Target node. Optional (default=None)</span>
<span class="sd"> </span>
<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    K : integer</span>
<span class="sd">        Edge connectivity for G, or local edge connectivity if source </span>
<span class="sd">        and target were provided</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; # Platonic icosahedral graph is 5-edge-connected</span>
<span class="sd">    &gt;&gt;&gt; G = nx.icosahedral_graph()</span>
<span class="sd">    &gt;&gt;&gt; nx.edge_connectivity(G)</span>
<span class="sd">    5</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    This is a flow based implementation of global edge connectivity. For</span>
<span class="sd">    undirected graphs the algorithm works by finding a &#39;small&#39; dominating </span>
<span class="sd">    set of nodes of G (see algorithm 7 in [1]_ ) and computing local max flow </span>
<span class="sd">    (see local_edge_connectivity) between an arbitrary node in the dominating </span>
<span class="sd">    set and the rest of nodes in it. This is an implementation of </span>
<span class="sd">    algorithm 6 in [1]_ .</span>

<span class="sd">    For directed graphs, the algorithm does n calls to the max flow function.</span>
<span class="sd">    This is an implementation of algorithm 8 in [1]_ . We use the Ford and </span>
<span class="sd">    Fulkerson algorithm to compute max flow (see ford_fulkerson).</span>
<span class="sd">    </span>
<span class="sd">    See also</span>
<span class="sd">    --------</span>
<span class="sd">    local_node_connectivity</span>
<span class="sd">    node_connectivity</span>
<span class="sd">    local_edge_connectivity</span>
<span class="sd">    max_flow</span>
<span class="sd">    ford_fulkerson </span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. </span>
<span class="sd">        http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c"># Local edge connectivity</span>
    <span class="k">if</span> <span class="n">s</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span> <span class="ow">and</span> <span class="n">t</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&#39;node </span><span class="si">%s</span><span class="s"> not in graph&#39;</span> <span class="o">%</span> <span class="n">s</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">t</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&#39;node </span><span class="si">%s</span><span class="s"> not in graph&#39;</span> <span class="o">%</span> <span class="n">t</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span>
    <span class="c"># Global edge connectivity</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="c"># Algorithm 8 in [1]</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_weakly_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="c"># initial value for lambda is min degree (\delta(G))</span>
        <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">()</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
        <span class="c"># reuse auxiliary digraph</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">_aux_digraph_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
        <span class="n">nodes</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">()</span>
        <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">nodes</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
            <span class="k">try</span><span class="p">:</span>
                <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodes</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> 
                                                    <span class="n">nodes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">],</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="n">H</span><span class="p">))</span>
            <span class="k">except</span> <span class="ne">IndexError</span><span class="p">:</span> <span class="c"># last node!</span>
                <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodes</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> 
                                                    <span class="n">nodes</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="n">H</span><span class="p">))</span>
        <span class="k">return</span> <span class="n">L</span>
    <span class="k">else</span><span class="p">:</span> <span class="c"># undirected</span>
        <span class="c"># Algorithm 6 in [1]</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">return</span> <span class="mi">0</span>
        <span class="c"># initial value for lambda is min degree (\delta(G))</span>
        <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">G</span><span class="o">.</span><span class="n">degree</span><span class="p">()</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
        <span class="c"># reuse auxiliary digraph</span>
        <span class="n">H</span> <span class="o">=</span> <span class="n">_aux_digraph_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
        <span class="c"># A dominating set is \lambda-covering</span>
        <span class="c"># We need a dominating set with at least two nodes</span>
        <span class="k">for</span> <span class="n">node</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="n">D</span> <span class="o">=</span> <span class="n">dominating_set</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">start_with</span><span class="o">=</span><span class="n">node</span><span class="p">)</span>
            <span class="n">v</span> <span class="o">=</span> <span class="n">D</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
            <span class="k">if</span> <span class="n">D</span><span class="p">:</span> <span class="k">break</span>
        <span class="k">else</span><span class="p">:</span> 
            <span class="c"># in complete graphs the dominating sets will always be of one node</span>
            <span class="c"># thus we return min degree</span>
            <span class="k">return</span> <span class="n">L</span>
        <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">D</span><span class="p">:</span>
            <span class="n">L</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">local_edge_connectivity</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">aux_digraph</span><span class="o">=</span><span class="n">H</span><span class="p">))</span>
        <span class="k">return</span> <span class="n">L</span>
</div>
<span class="k">def</span> <span class="nf">dominating_set</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">start_with</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="c"># Algorithm 7 in [1]</span>
    <span class="n">all_nodes</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">start_with</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
        <span class="n">v</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span> <span class="c"># pick a node</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">start_with</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&#39;node </span><span class="si">%s</span><span class="s"> not in G&#39;</span> <span class="o">%</span> <span class="n">start_with</span><span class="p">)</span>
        <span class="n">v</span> <span class="o">=</span> <span class="n">start_with</span>
    <span class="n">D</span> <span class="o">=</span> <span class="nb">set</span><span class="p">([</span><span class="n">v</span><span class="p">])</span>
    <span class="n">ND</span> <span class="o">=</span> <span class="nb">set</span><span class="p">([</span><span class="n">nbr</span> <span class="k">for</span> <span class="n">nbr</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">v</span><span class="p">]])</span>
    <span class="n">other</span> <span class="o">=</span> <span class="n">all_nodes</span> <span class="o">-</span> <span class="n">ND</span> <span class="o">-</span> <span class="n">D</span>
    <span class="k">while</span> <span class="n">other</span><span class="p">:</span>
        <span class="n">w</span> <span class="o">=</span> <span class="n">other</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
        <span class="n">D</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">w</span><span class="p">)</span>
        <span class="n">ND</span><span class="o">.</span><span class="n">update</span><span class="p">([</span><span class="n">nbr</span> <span class="k">for</span> <span class="n">nbr</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">w</span><span class="p">]</span> <span class="k">if</span> <span class="n">nbr</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">D</span><span class="p">])</span>
        <span class="n">other</span> <span class="o">=</span> <span class="n">all_nodes</span> <span class="o">-</span> <span class="n">ND</span> <span class="o">-</span> <span class="n">D</span>
    <span class="k">return</span> <span class="n">D</span>

<span class="k">def</span> <span class="nf">is_dominating_set</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nbunch</span><span class="p">):</span>
    <span class="c"># Proposed by Dan on the mailing list</span>
    <span class="n">allnodes</span><span class="o">=</span><span class="nb">set</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>
    <span class="n">testset</span><span class="o">=</span><span class="nb">set</span><span class="p">(</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">nbunch</span> <span class="k">if</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">)</span>
    <span class="n">nbrs</span><span class="o">=</span><span class="nb">set</span><span class="p">()</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">testset</span><span class="p">:</span>
        <span class="n">nbrs</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">G</span><span class="p">[</span><span class="n">n</span><span class="p">])</span>
    <span class="k">if</span> <span class="n">nbrs</span> <span class="o">-</span> <span class="n">allnodes</span><span class="p">:</span>  <span class="c"># some nodes left--not dominating</span>
        <span class="k">return</span> <span class="bp">False</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="bp">True</span>
</pre></div>

          </div>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li><a href="http://networkx.github.com/">NetworkX Home </a> |&nbsp;</li>
        <li><a href="http://networkx.github.com/documentation.html">Documentation </a>|&nbsp;</li>
        <li><a href="http://networkx.github.com/download.html">Download </a> |&nbsp;</li>
        <li><a href="http://github.com/networkx">Developer (Github)</a></li>



          <li><a href="../../../index.html" >Module code</a> &raquo;</li>
          <li><a href="../../../networkx.html" >networkx</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2013, NetworkX Developers.
      Last updated on Oct 23, 2013.
      Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
    </div>
  </body>
</html>