Sophie

Sophie

distrib > Mageia > 4 > x86_64 > by-pkgid > e5ddaa4c8aef3b801d60a051db101461 > files > 1134

python-networkx-1.8.1-3.mga4.noarch.rpm



<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>networkx.linalg.laplacianmatrix &mdash; NetworkX 1.8.1 documentation</title>
    
    <link rel="stylesheet" href="../../../_static/networkx.css" type="text/css" />
    <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../../',
        VERSION:     '1.8.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  false
      };
    </script>
    <script type="text/javascript" src="../../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../../_static/doctools.js"></script>
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 1.8.1 documentation"
          href="../../../_static/opensearch.xml"/>
    <link rel="top" title="NetworkX 1.8.1 documentation" href="../../../index.html" />
    <link rel="up" title="networkx" href="../../networkx.html" /> 
  </head>
  <body>
<div style="color: black;background-color: white; font-size: 3.2em; text-align: left; padding: 15px 10px 10px 15px">
NetworkX
</div>

    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li><a href="http://networkx.github.com/">NetworkX Home </a> |&nbsp;</li>
        <li><a href="http://networkx.github.com/documentation.html">Documentation </a>|&nbsp;</li>
        <li><a href="http://networkx.github.com/download.html">Download </a> |&nbsp;</li>
        <li><a href="http://github.com/networkx">Developer (Github)</a></li>



          <li><a href="../../index.html" >Module code</a> &raquo;</li>
          <li><a href="../../networkx.html" accesskey="U">networkx</a> &raquo;</li> 
      </ul>
    </div>



      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="../../../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <h1>Source code for networkx.linalg.laplacianmatrix</h1><div class="highlight"><pre>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Laplacian matrix of graphs.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="c">#    Copyright (C) 2004-2013 by</span>
<span class="c">#    Aric Hagberg &lt;hagberg@lanl.gov&gt;</span>
<span class="c">#    Dan Schult &lt;dschult@colgate.edu&gt;</span>
<span class="c">#    Pieter Swart &lt;swart@lanl.gov&gt;</span>
<span class="c">#    All rights reserved.</span>
<span class="c">#    BSD license.</span>
<span class="kn">import</span> <span class="nn">networkx</span> <span class="kn">as</span> <span class="nn">nx</span>
<span class="kn">from</span> <span class="nn">networkx.utils</span> <span class="kn">import</span> <span class="n">require</span><span class="p">,</span> <span class="n">not_implemented_for</span>

<span class="n">__author__</span> <span class="o">=</span> <span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="s">&#39;Aric Hagberg &lt;aric.hagberg@gmail.com&gt;&#39;</span><span class="p">,</span>
                        <span class="s">&#39;Pieter Swart (swart@lanl.gov)&#39;</span><span class="p">,</span>
                        <span class="s">&#39;Dan Schult (dschult@colgate.edu)&#39;</span><span class="p">,</span>
                        <span class="s">&#39;Alejandro Weinstein &lt;alejandro.weinstein@gmail.com&gt;&#39;</span><span class="p">])</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s">&#39;laplacian_matrix&#39;</span><span class="p">,</span>
           <span class="s">&#39;normalized_laplacian_matrix&#39;</span><span class="p">,</span>
           <span class="s">&#39;directed_laplacian_matrix&#39;</span><span class="p">]</span>

<span class="nd">@require</span><span class="p">(</span><span class="s">&#39;numpy&#39;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s">&#39;directed&#39;</span><span class="p">)</span>
<div class="viewcode-block" id="laplacian_matrix"><a class="viewcode-back" href="../../../reference/generated/networkx.linalg.laplacianmatrix.laplacian_matrix.html#networkx.linalg.laplacianmatrix.laplacian_matrix">[docs]</a><span class="k">def</span> <span class="nf">laplacian_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodelist</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s">&#39;weight&#39;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Return the Laplacian matrix of G.</span>

<span class="sd">    The graph Laplacian is the matrix L = D - A, where</span>
<span class="sd">    A is the adjacency matrix and D is the diagonal matrix of node degrees.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : graph</span>
<span class="sd">       A NetworkX graph</span>

<span class="sd">    nodelist : list, optional</span>
<span class="sd">       The rows and columns are ordered according to the nodes in nodelist.</span>
<span class="sd">       If nodelist is None, then the ordering is produced by G.nodes().</span>

<span class="sd">    weight : string or None, optional (default=&#39;weight&#39;)</span>
<span class="sd">       The edge data key used to compute each value in the matrix.</span>
<span class="sd">       If None, then each edge has weight 1.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    L : NumPy matrix</span>
<span class="sd">      The Laplacian matrix of G.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    For MultiGraph/MultiDiGraph, the edges weights are summed.</span>
<span class="sd">    See to_numpy_matrix for other options.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    to_numpy_matrix</span>
<span class="sd">    normalized_laplacian_matrix</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
    <span class="k">if</span> <span class="n">nodelist</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
        <span class="n">nodelist</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">nodes</span><span class="p">()</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_multigraph</span><span class="p">():</span>
        <span class="c"># this isn&#39;t the fastest way to do this...</span>
        <span class="n">A</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">to_numpy_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span><span class="n">nodelist</span><span class="o">=</span><span class="n">nodelist</span><span class="p">,</span><span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">))</span>
        <span class="n">I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">A</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
        <span class="n">D</span> <span class="o">=</span> <span class="n">I</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">A</span><span class="p">,</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
        <span class="n">L</span> <span class="o">=</span> <span class="n">D</span> <span class="o">-</span> <span class="n">A</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="c"># Graph or DiGraph, this is faster than above</span>
        <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">nodelist</span><span class="p">)</span>
        <span class="n">index</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">n</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">nodelist</span><span class="p">)</span> <span class="p">)</span>
        <span class="n">L</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">n</span><span class="p">,</span><span class="n">n</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">ui</span><span class="p">,</span><span class="n">u</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">nodelist</span><span class="p">):</span>
            <span class="n">totalwt</span> <span class="o">=</span> <span class="mf">0.0</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span><span class="n">d</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                <span class="k">try</span><span class="p">:</span>
                    <span class="n">vi</span> <span class="o">=</span> <span class="n">index</span><span class="p">[</span><span class="n">v</span><span class="p">]</span>
                <span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
                    <span class="k">continue</span>
                <span class="n">wt</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
                <span class="n">L</span><span class="p">[</span><span class="n">ui</span><span class="p">,</span><span class="n">vi</span><span class="p">]</span> <span class="o">=</span> <span class="o">-</span><span class="n">wt</span>
                <span class="n">totalwt</span> <span class="o">+=</span> <span class="n">wt</span>
            <span class="n">L</span><span class="p">[</span><span class="n">ui</span><span class="p">,</span><span class="n">ui</span><span class="p">]</span> <span class="o">=</span> <span class="n">totalwt</span>
    <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">asmatrix</span><span class="p">(</span><span class="n">L</span><span class="p">)</span>
</div>
<span class="nd">@require</span><span class="p">(</span><span class="s">&#39;numpy&#39;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s">&#39;directed&#39;</span><span class="p">)</span>
<div class="viewcode-block" id="normalized_laplacian_matrix"><a class="viewcode-back" href="../../../reference/generated/networkx.linalg.laplacianmatrix.normalized_laplacian_matrix.html#networkx.linalg.laplacianmatrix.normalized_laplacian_matrix">[docs]</a><span class="k">def</span> <span class="nf">normalized_laplacian_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodelist</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s">&#39;weight&#39;</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Return the normalized Laplacian matrix of G.</span>

<span class="sd">    The normalized graph Laplacian is the matrix</span>

<span class="sd">    .. math::</span>

<span class="sd">        NL = D^{-1/2} L D^{-1/2}</span>

<span class="sd">    where `L` is the graph Laplacian and `D` is the diagonal matrix of</span>
<span class="sd">    node degrees.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : graph</span>
<span class="sd">       A NetworkX graph</span>

<span class="sd">    nodelist : list, optional</span>
<span class="sd">       The rows and columns are ordered according to the nodes in nodelist.</span>
<span class="sd">       If nodelist is None, then the ordering is produced by G.nodes().</span>

<span class="sd">    weight : string or None, optional (default=&#39;weight&#39;)</span>
<span class="sd">       The edge data key used to compute each value in the matrix.</span>
<span class="sd">       If None, then each edge has weight 1.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    L : NumPy matrix</span>
<span class="sd">      The normalized Laplacian matrix of G.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    For MultiGraph/MultiDiGraph, the edges weights are summed.</span>
<span class="sd">    See to_numpy_matrix for other options.</span>

<span class="sd">    If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is</span>
<span class="sd">    the adjencency matrix [2]_.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    laplacian_matrix</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Fan Chung-Graham, Spectral Graph Theory,</span>
<span class="sd">       CBMS Regional Conference Series in Mathematics, Number 92, 1997.</span>
<span class="sd">    .. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized</span>
<span class="sd">       Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,</span>
<span class="sd">       March 2007.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_multigraph</span><span class="p">():</span>
        <span class="n">L</span> <span class="o">=</span> <span class="n">laplacian_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodelist</span><span class="o">=</span><span class="n">nodelist</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
        <span class="n">D</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">L</span><span class="p">)</span>
    <span class="k">elif</span> <span class="n">G</span><span class="o">.</span><span class="n">number_of_selfloops</span><span class="p">()</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
        <span class="n">L</span> <span class="o">=</span> <span class="n">laplacian_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodelist</span><span class="o">=</span><span class="n">nodelist</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
        <span class="n">D</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">L</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">A</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">nx</span><span class="o">.</span><span class="n">adj_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">))</span>
        <span class="n">D</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
        <span class="n">L</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">D</span><span class="p">)</span> <span class="o">-</span> <span class="n">A</span>

    <span class="c"># Handle div by 0. It happens if there are unconnected nodes</span>
    <span class="k">with</span> <span class="n">np</span><span class="o">.</span><span class="n">errstate</span><span class="p">(</span><span class="n">divide</span><span class="o">=</span><span class="s">&#39;ignore&#39;</span><span class="p">):</span>
        <span class="n">Disqrt</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">D</span><span class="p">))</span>
    <span class="n">Disqrt</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">isinf</span><span class="p">(</span><span class="n">Disqrt</span><span class="p">)]</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="n">Ln</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">Disqrt</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">L</span><span class="p">,</span><span class="n">Disqrt</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">Ln</span>

<span class="c">###############################################################################</span>
<span class="c"># Code based on</span>
<span class="c"># https://bitbucket.org/bedwards/networkx-community/src/370bd69fc02f/networkx/algorithms/community/</span>
</div>
<span class="nd">@require</span><span class="p">(</span><span class="s">&#39;numpy&#39;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s">&#39;undirected&#39;</span><span class="p">)</span>
<span class="nd">@not_implemented_for</span><span class="p">(</span><span class="s">&#39;multigraph&#39;</span><span class="p">)</span>
<div class="viewcode-block" id="directed_laplacian_matrix"><a class="viewcode-back" href="../../../reference/generated/networkx.linalg.laplacianmatrix.directed_laplacian_matrix.html#networkx.linalg.laplacianmatrix.directed_laplacian_matrix">[docs]</a><span class="k">def</span> <span class="nf">directed_laplacian_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodelist</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s">&#39;weight&#39;</span><span class="p">,</span>
                              <span class="n">walk_type</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.95</span><span class="p">):</span>
    <span class="sd">r&quot;&quot;&quot;Return the directed Laplacian matrix of G.</span>

<span class="sd">    The graph directed Laplacian is the matrix</span>

<span class="sd">    .. math::</span>

<span class="sd">        L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} ) / 2</span>

<span class="sd">    where `I` is the identity matrix, `P` is the transition matrix of the</span>
<span class="sd">    graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and</span>
<span class="sd">    zeros elsewhere.</span>

<span class="sd">    Depending on the value of walk_type, `P` can be the transition matrix</span>
<span class="sd">    induced by a random walk, a lazy random walk, or a random walk with</span>
<span class="sd">    teleportation (PageRank).</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : DiGraph</span>
<span class="sd">       A NetworkX graph</span>

<span class="sd">    nodelist : list, optional</span>
<span class="sd">       The rows and columns are ordered according to the nodes in nodelist.</span>
<span class="sd">       If nodelist is None, then the ordering is produced by G.nodes().</span>

<span class="sd">    weight : string or None, optional (default=&#39;weight&#39;)</span>
<span class="sd">       The edge data key used to compute each value in the matrix.</span>
<span class="sd">       If None, then each edge has weight 1.</span>

<span class="sd">    walk_type : string or None, optional (default=None)</span>
<span class="sd">       If None, `P` is selected depending on the properties of the</span>
<span class="sd">       graph. Otherwise is one of &#39;random&#39;, &#39;lazy&#39;, or &#39;pagerank&#39;</span>

<span class="sd">    alpha : real</span>
<span class="sd">       (1 - alpha) is the teleportation probability used with pagerank</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    L : NumPy array</span>
<span class="sd">      Normalized Laplacian of G.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If NumPy cannot be imported</span>

<span class="sd">    NetworkXNotImplemnted</span>
<span class="sd">        If G is not a DiGraph</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Only implemented for DiGraphs</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    laplacian_matrix</span>

<span class="sd">    References</span>
<span class="sd">    ----------</span>
<span class="sd">    .. [1] Fan Chung (2005).</span>
<span class="sd">       Laplacians and the Cheeger inequality for directed graphs.</span>
<span class="sd">       Annals of Combinatorics, 9(1), 2005</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
    <span class="k">if</span> <span class="n">walk_type</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_strongly_connected</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
            <span class="k">if</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_aperiodic</span><span class="p">(</span><span class="n">G</span><span class="p">):</span>
                <span class="n">walk_type</span> <span class="o">=</span> <span class="s">&quot;random&quot;</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="n">walk_type</span> <span class="o">=</span> <span class="s">&quot;lazy&quot;</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">walk_type</span> <span class="o">=</span> <span class="s">&quot;pagerank&quot;</span>

    <span class="n">M</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">to_numpy_matrix</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">nodelist</span><span class="o">=</span><span class="n">nodelist</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="n">n</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">shape</span>
    <span class="k">if</span> <span class="n">walk_type</span> <span class="ow">in</span> <span class="p">[</span><span class="s">&quot;random&quot;</span><span class="p">,</span> <span class="s">&quot;lazy&quot;</span><span class="p">]:</span>
        <span class="n">DI</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diagflat</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
        <span class="k">if</span> <span class="n">walk_type</span> <span class="o">==</span> <span class="s">&quot;random&quot;</span><span class="p">:</span>
            <span class="n">P</span> <span class="o">=</span>  <span class="n">DI</span> <span class="o">*</span> <span class="n">M</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
            <span class="n">P</span> <span class="o">=</span> <span class="p">(</span><span class="n">I</span> <span class="o">+</span> <span class="n">DI</span> <span class="o">*</span> <span class="n">M</span><span class="p">)</span> <span class="o">/</span> <span class="mf">2.0</span>
    <span class="k">elif</span> <span class="n">walk_type</span> <span class="o">==</span> <span class="s">&quot;pagerank&quot;</span><span class="p">:</span>
        <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="mi">0</span> <span class="o">&lt;</span> <span class="n">alpha</span> <span class="o">&lt;</span> <span class="mi">1</span><span class="p">):</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&#39;alpha must be between 0 and 1&#39;</span><span class="p">)</span>
        <span class="c"># add constant to dangling nodes&#39; row</span>
        <span class="n">dangling</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">M</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">dangling</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
            <span class="n">M</span><span class="p">[</span><span class="n">d</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">/</span> <span class="n">n</span>
        <span class="c"># normalize</span>
        <span class="n">M</span> <span class="o">=</span> <span class="n">M</span> <span class="o">/</span> <span class="n">M</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
        <span class="n">P</span> <span class="o">=</span> <span class="n">alpha</span> <span class="o">*</span> <span class="n">M</span> <span class="o">+</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">alpha</span><span class="p">)</span> <span class="o">/</span> <span class="n">n</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s">&quot;walk_type must be random, lazy, or pagerank&quot;</span><span class="p">)</span>

    <span class="n">evals</span><span class="p">,</span> <span class="n">evecs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">eig</span><span class="p">(</span><span class="n">P</span><span class="o">.</span><span class="n">T</span><span class="p">)</span>
    <span class="n">index</span> <span class="o">=</span> <span class="n">evals</span><span class="o">.</span><span class="n">argsort</span><span class="p">()[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="c"># index of largest eval,evec</span>
    <span class="c"># eigenvector of largest eigenvalue at ind[-1]</span>
    <span class="n">v</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">evecs</span><span class="p">[:,</span><span class="n">index</span><span class="p">])</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span><span class="o">.</span><span class="n">real</span>
    <span class="n">p</span> <span class="o">=</span>  <span class="n">v</span> <span class="o">/</span> <span class="n">v</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
    <span class="n">sp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
    <span class="n">Q</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">sp</span><span class="p">)</span> <span class="o">*</span> <span class="n">P</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="mf">1.0</span><span class="o">/</span><span class="n">sp</span><span class="p">)</span>
    <span class="n">I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">))</span>

    <span class="k">return</span> <span class="n">I</span>  <span class="o">-</span> <span class="p">(</span><span class="n">Q</span> <span class="o">+</span> <span class="n">Q</span><span class="o">.</span><span class="n">T</span><span class="p">)</span> <span class="o">/</span><span class="mf">2.0</span>

<span class="c"># fixture for nose tests</span></div>
<span class="k">def</span> <span class="nf">setup_module</span><span class="p">(</span><span class="n">module</span><span class="p">):</span>
    <span class="kn">from</span> <span class="nn">nose</span> <span class="kn">import</span> <span class="n">SkipTest</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="kn">import</span> <span class="nn">numpy</span>
    <span class="k">except</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">SkipTest</span><span class="p">(</span><span class="s">&quot;NumPy not available&quot;</span><span class="p">)</span>
</pre></div>

          </div>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li><a href="http://networkx.github.com/">NetworkX Home </a> |&nbsp;</li>
        <li><a href="http://networkx.github.com/documentation.html">Documentation </a>|&nbsp;</li>
        <li><a href="http://networkx.github.com/download.html">Download </a> |&nbsp;</li>
        <li><a href="http://github.com/networkx">Developer (Github)</a></li>



          <li><a href="../../index.html" >Module code</a> &raquo;</li>
          <li><a href="../../networkx.html" >networkx</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2013, NetworkX Developers.
      Last updated on Oct 23, 2013.
      Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3.
    </div>
  </body>
</html>