Sophie

Sophie

distrib > Mageia > 5 > i586 > by-pkgid > 82ac505190c212a37e5a9f824939c992 > files > 618

vtk-examples-6.0.0-8.mga5.i586.rpm

#!/usr/bin/env python

# This simple example shows how to do basic rendering and pipeline
# creation.

import vtk
# The colors module defines various useful colors.
from vtk.util.colors import tomato

# This creates a polygonal cylinder model with eight circumferential
# facets.
cylinder = vtk.vtkCylinderSource()
cylinder.SetResolution(8)

# The mapper is responsible for pushing the geometry into the graphics
# library. It may also do color mapping, if scalars or other
# attributes are defined.
cylinderMapper = vtk.vtkPolyDataMapper()
cylinderMapper.SetInputConnection(cylinder.GetOutputPort())

# The actor is a grouping mechanism: besides the geometry (mapper), it
# also has a property, transformation matrix, and/or texture map.
# Here we set its color and rotate it -22.5 degrees.
cylinderActor = vtk.vtkActor()
cylinderActor.SetMapper(cylinderMapper)
cylinderActor.GetProperty().SetColor(tomato)
cylinderActor.RotateX(30.0)
cylinderActor.RotateY(-45.0)

# Create the graphics structure. The renderer renders into the render
# window. The render window interactor captures mouse events and will
# perform appropriate camera or actor manipulation depending on the
# nature of the events.
ren = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)

# Add the actors to the renderer, set the background and size
ren.AddActor(cylinderActor)
ren.SetBackground(0.1, 0.2, 0.4)
renWin.SetSize(200, 200)

# This allows the interactor to initalize itself. It has to be
# called before an event loop.
iren.Initialize()

# We'll zoom in a little by accessing the camera and invoking a "Zoom"
# method on it.
ren.ResetCamera()
ren.GetActiveCamera().Zoom(1.5)
renWin.Render()

# Start the event loop.
iren.Start()