Sophie

Sophie

distrib > Mageia > 5 > i586 > by-pkgid > dc51b8a2b4c20bd1ac1b9c8f81249719 > files > 440

boost-examples-1.55.0-8.mga5.noarch.rpm

// Boost.Container varray
//
// Copyright (c) 2012-2013 Adam Wulkiewicz, Lodz, Poland.
// Copyright (c) 2011-2013 Andrew Hundt.
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_CONTAINER_DETAIL_VARRAY_HPP
#define BOOST_CONTAINER_DETAIL_VARRAY_HPP

#if (defined _MSC_VER)
#  pragma once
#endif

#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/detail/preprocessor.hpp>

#include "varray_util.hpp"
#include "varray_concept.hpp"
#include <boost/iterator/iterator_concepts.hpp>

#ifndef BOOST_NO_EXCEPTIONS
#include <stdexcept>
#endif // BOOST_NO_EXCEPTIONS

#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/swap.hpp>
#include <boost/integer.hpp>

#include <boost/mpl/assert.hpp>

#include <boost/type_traits/is_unsigned.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/type_traits/aligned_storage.hpp>

// TODO - use std::reverse_iterator and std::iterator_traits
// instead Boost.Iterator to remove dependency?
// or boost/detail/iterator.hpp ?
#include <boost/iterator/reverse_iterator.hpp>

/**
 * @defgroup varray_non_member varray non-member functions
 */

namespace boost { namespace container { namespace container_detail {

// Forward declaration
template <typename Value, std::size_t Capacity, typename Strategy>
class varray;

namespace strategy {
    
// TODO: Improve error messages
//       possibly include N in the strategy, and provide size as an optoinal allocate_failed parameter?
//       Example of current error with reserve(4) when capacity is 3:
//          "boost/container/varray.hpp(66): size can't exceed the capacity"
//       Could say
//          "cannot reserve(4) due to fixed capacity of 3 elements"    

//! @brief The default strategy.
//!
//! @tparam Value Type of element stored in the container.
template <typename Value>
struct def
{
    typedef Value value_type;
    typedef std::size_t size_type;
    typedef std::ptrdiff_t difference_type;
    typedef Value* pointer;
    typedef const Value* const_pointer;
    typedef Value& reference;
    typedef const Value& const_reference;

    static void allocate_failed()
    {
        BOOST_ASSERT_MSG(false, "size can't exceed the capacity");
    }
};

//! @brief The strategy adapting info from passed Allocator.
//!
//! This strategy defines the same types that are defined in the Allocator.
//!
//! @tparam Allocator The Allocator which will be adapted.
template <typename Allocator>
struct allocator_adaptor
{
    typedef typename Allocator::value_type value_type;
    typedef typename Allocator::size_type size_type;
    typedef typename Allocator::difference_type difference_type;
    typedef typename Allocator::pointer pointer;
    typedef typename Allocator::const_pointer const_pointer;
    typedef typename Allocator::reference reference;
    typedef typename Allocator::const_reference const_reference;

    static void allocate_failed()
    {
        BOOST_ASSERT_MSG(false, "size can't exceed the capacity");
    }
};

} // namespace strategy

struct varray_error_handler
{
    template <typename V, std::size_t Capacity, typename S>
    static void check_capacity(varray<V, Capacity, S> const&, std::size_t s)
    {
        if ( Capacity < s )
            S::allocate_failed();
    }

    template <typename V, std::size_t C, typename S>
    static void check_at(varray<V, C, S> const& v,
                         typename varray<V, C, S>::size_type i)
    {
        (void)v;
        (void)i;
// TODO - use BOOST_THROW_EXCEPTION here?
#ifndef BOOST_NO_EXCEPTIONS
        if ( v.size() <= i )
            throw std::out_of_range("index out of bounds");
#else // BOOST_NO_EXCEPTIONS
        BOOST_ASSERT_MSG(i < v.size(), "index out of bounds");
#endif // BOOST_NO_EXCEPTIONS
    }

    template <typename V, std::size_t C, typename S>
    static void check_operator_brackets(varray<V, C, S> const& v,
                                        typename varray<V, C, S>::size_type i)
    {
        (void)v;
        (void)i;
        BOOST_ASSERT_MSG(i < v.size(), "index out of bounds");
    }

    template <typename V, std::size_t C, typename S>
    static void check_empty(varray<V, C, S> const& v)
    {
        (void)v;
        BOOST_ASSERT_MSG(0 < v.size(), "the container is empty");
    }

    template <typename V, std::size_t C, typename S>
    static void check_iterator_end_neq(varray<V, C, S> const& v,
                                       typename varray<V, C, S>::const_iterator position)
    {
        (void)v;
        (void)position;
        BOOST_ASSERT_MSG(v.begin() <= position && position < v.end(), "iterator out of bounds");
    }

    template <typename V, std::size_t C, typename S>
    static void check_iterator_end_eq(varray<V, C, S> const& v,
                                      typename varray<V, C, S>::const_iterator position)
    {
        (void)v;
        (void)position;
        BOOST_ASSERT_MSG(v.begin() <= position && position <= v.end(), "iterator out of bounds");
    }
};

template <typename Value, std::size_t Capacity, typename Strategy>
struct varray_traits
{
    typedef typename Strategy::value_type value_type;
    typedef typename Strategy::size_type size_type;
    typedef typename Strategy::difference_type difference_type;
    typedef typename Strategy::pointer pointer;
    typedef typename Strategy::const_pointer const_pointer;
    typedef typename Strategy::reference reference;
    typedef typename Strategy::const_reference const_reference;

    typedef varray_error_handler error_handler;

    typedef boost::false_type use_memop_in_swap_and_move;
    typedef boost::false_type use_optimized_swap;
    typedef boost::false_type disable_trivial_init;
};

/**
 * @brief A variable-size array container with fixed capacity.
 *
 * varray is a sequence container like boost::container::vector with contiguous storage that can
 * change in size, along with the static allocation, low overhead, and fixed capacity of boost::array.
 *
 * A varray is a sequence that supports random access to elements, constant time insertion and
 * removal of elements at the end, and linear time insertion and removal of elements at the beginning or 
 * in the middle. The number of elements in a varray may vary dynamically up to a fixed capacity
 * because elements are stored within the object itself similarly to an array. However, objects are 
 * initialized as they are inserted into varray unlike C arrays or std::array which must construct
 * all elements on instantiation. The behavior of varray enables the use of statically allocated
 * elements in cases with complex object lifetime requirements that would otherwise not be trivially 
 * possible.
 *
 * @par Error Handling
 *  Insertion beyond the capacity and out of bounds errors result in undefined behavior unless
 *  otherwise specified. In this respect if size() == capacity(), then varray::push_back()
 *  behaves like std::vector pop_front() if size() == empty(). The reason for this difference
 *  is because unlike vectors, varray does not perform allocation.
 *
 * @par Advanced Usage
 *  Error handling behavior can be modified to more closely match std::vector exception behavior
 *  when exceeding bounds by providing an alternate Strategy and varray_traits instantiation.
 *
 * @tparam Value    The type of element that will be stored.
 * @tparam Capacity The maximum number of elements varray can store, fixed at compile time.
 * @tparam Strategy Defines the public typedefs and error handlers,
 *         implements StaticVectorStrategy and has some similarities
 *         to an Allocator.
 */
template <typename Value, std::size_t Capacity, typename Strategy = strategy::def<Value> >
class varray
{
    typedef container_detail::varray_traits<
        Value, Capacity, Strategy
    > vt;
    
    typedef typename vt::error_handler errh;

    BOOST_MPL_ASSERT_MSG(
        ( boost::is_unsigned<typename vt::size_type>::value &&
          sizeof(typename boost::uint_value_t<Capacity>::least) <= sizeof(typename vt::size_type) ),
        SIZE_TYPE_IS_TOO_SMALL_FOR_SPECIFIED_CAPACITY,
        (varray)
    );

    BOOST_CONCEPT_ASSERT((concept::VArrayStrategy<Strategy>));

    typedef boost::aligned_storage<
        sizeof(Value[Capacity]),
        boost::alignment_of<Value[Capacity]>::value
    > aligned_storage_type;

    template <typename V, std::size_t C, typename S>
    friend class varray;

    BOOST_COPYABLE_AND_MOVABLE(varray)

#ifdef BOOST_NO_RVALUE_REFERENCES
public:
    template <std::size_t C, typename S>
    varray & operator=(varray<Value, C, S> & sv)
    {
        typedef varray<Value, C, S> other;
        this->operator=(static_cast<const ::boost::rv<other> &>(const_cast<const other &>(sv)));
        return *this;
    }
#endif

public:
    //! @brief The type of elements stored in the container.
    typedef typename vt::value_type value_type;
    //! @brief The unsigned integral type used by the container.
    typedef typename vt::size_type size_type;
    //! @brief The pointers difference type.
    typedef typename vt::difference_type difference_type;
    //! @brief The pointer type.
    typedef typename vt::pointer pointer;
    //! @brief The const pointer type.
    typedef typename vt::const_pointer const_pointer;
    //! @brief The value reference type.
    typedef typename vt::reference reference;
    //! @brief The value const reference type.
    typedef typename vt::const_reference const_reference;

    //! @brief The iterator type.
    typedef pointer iterator;
    //! @brief The const iterator type.
    typedef const_pointer const_iterator;
    //! @brief The reverse iterator type.
    typedef boost::reverse_iterator<iterator> reverse_iterator;
    //! @brief The const reverse iterator.
    typedef boost::reverse_iterator<const_iterator> const_reverse_iterator;

    //! @brief The type of a strategy used by the varray.
    typedef Strategy strategy_type;

    //! @brief Constructs an empty varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    varray()
        : m_size(0)
    {}

    //! @pre <tt>count <= capacity()</tt>
    //!
    //! @brief Constructs a varray containing count value initialized Values.
    //!
    //! @param count    The number of values which will be contained in the container.
    //!
    //! @par Throws
    //!   If Value's default constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    explicit varray(size_type count)
        : m_size(0)
    {
        this->resize(count);                                                        // may throw
    }

    //! @pre <tt>count <= capacity()</tt>
    //!
    //! @brief Constructs a varray containing count copies of value.
    //!
    //! @param count    The number of copies of a values that will be contained in the container.
    //! @param value    The value which will be used to copy construct values.
    //!
    //! @par Throws
    //!   If Value's copy constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    varray(size_type count, value_type const& value)
        : m_size(0)
    {
        this->resize(count, value);                                                 // may throw
    }

    //! @pre
    //!  @li <tt>distance(first, last) <= capacity()</tt>
    //!  @li Iterator must meet the \c ForwardTraversalIterator concept.
    //!
    //! @brief Constructs a varray containing copy of a range <tt>[first, last)</tt>.
    //!
    //! @param first    The iterator to the first element in range.
    //! @param last     The iterator to the one after the last element in range.
    //!
    //! @par Throws
    //!   If Value's constructor taking a dereferenced Iterator throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <typename Iterator>
    varray(Iterator first, Iterator last)
        : m_size(0)
    {
        BOOST_CONCEPT_ASSERT((boost_concepts::ForwardTraversal<Iterator>)); // Make sure you passed a ForwardIterator
        
        this->assign(first, last);                                                    // may throw
    }

    //! @brief Constructs a copy of other varray.
    //!
    //! @param other    The varray which content will be copied to this one.
    //!
    //! @par Throws
    //!   If Value's copy constructor throws.
    //!
    //! @par Complexity
    //!   Linear O(N).
    varray(varray const& other)
        : m_size(other.size())
    {
        namespace sv = varray_detail;
        sv::uninitialized_copy(other.begin(), other.end(), this->begin());          // may throw
    }

    //! @pre <tt>other.size() <= capacity()</tt>.
    //!
    //! @brief Constructs a copy of other varray.
    //!
    //! @param other    The varray which content will be copied to this one.
    //!
    //! @par Throws
    //!   If Value's copy constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <std::size_t C, typename S>
    varray(varray<value_type, C, S> const& other)
        : m_size(other.size())
    {
        errh::check_capacity(*this, other.size());                                  // may throw
        
        namespace sv = varray_detail;
        sv::uninitialized_copy(other.begin(), other.end(), this->begin());          // may throw
    }

    //! @brief Copy assigns Values stored in the other varray to this one.
    //!
    //! @param other    The varray which content will be copied to this one.
    //!
    //! @par Throws
    //!   If Value's copy constructor or copy assignment throws.
    //!
    //! @par Complexity
    //! Linear O(N).
    varray & operator=(BOOST_COPY_ASSIGN_REF(varray) other)
    {
        this->assign(other.begin(), other.end());                                     // may throw

        return *this;
    }

    //! @pre <tt>other.size() <= capacity()</tt>
    //!
    //! @brief Copy assigns Values stored in the other varray to this one.
    //!
    //! @param other    The varray which content will be copied to this one.
    //!
    //! @par Throws
    //!   If Value's copy constructor or copy assignment throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <std::size_t C, typename S>
// TEMPORARY WORKAROUND
#if defined(BOOST_NO_RVALUE_REFERENCES)
    varray & operator=(::boost::rv< varray<value_type, C, S> > const& other)
#else
    varray & operator=(varray<value_type, C, S> const& other)
#endif
    {
        this->assign(other.begin(), other.end());                                     // may throw

        return *this;
    }

    //! @brief Move constructor. Moves Values stored in the other varray to this one.
    //!
    //! @param other    The varray which content will be moved to this one.
    //!
    //! @par Throws
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor throws.
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor throws.
    //! @internal
    //!   @li It throws only if \c use_memop_in_swap_and_move is \c false_type - default.
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    varray(BOOST_RV_REF(varray) other)
    {
        typedef typename
        vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;

        this->move_ctor_dispatch(other, use_memop_in_swap_and_move());
    }

    //! @pre <tt>other.size() <= capacity()</tt>
    //!
    //! @brief Move constructor. Moves Values stored in the other varray to this one.
    //!
    //! @param other    The varray which content will be moved to this one.
    //!
    //! @par Throws
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor throws.
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor throws.
    //! @internal
    //!   @li It throws only if \c use_memop_in_swap_and_move is false_type - default.
    //! @endinternal
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <std::size_t C, typename S>
    varray(BOOST_RV_REF_3_TEMPL_ARGS(varray, value_type, C, S) other)
        : m_size(other.m_size)
    {
        errh::check_capacity(*this, other.size());                                  // may throw

        typedef typename
        vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;

        this->move_ctor_dispatch(other, use_memop_in_swap_and_move());
    }

    //! @brief Move assignment. Moves Values stored in the other varray to this one.
    //!
    //! @param other    The varray which content will be moved to this one.
    //!
    //! @par Throws
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws.
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws.
    //! @internal
    //!   @li It throws only if \c use_memop_in_swap_and_move is \c false_type - default.
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    varray & operator=(BOOST_RV_REF(varray) other)
    {
        if ( &other == this )
            return *this;

        typedef typename
        vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;

        this->move_assign_dispatch(other, use_memop_in_swap_and_move());

        return *this;
    }

    //! @pre <tt>other.size() <= capacity()</tt>
    //!
    //! @brief Move assignment. Moves Values stored in the other varray to this one.
    //!
    //! @param other    The varray which content will be moved to this one.
    //!
    //! @par Throws
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws.
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws.
    //! @internal
    //!   @li It throws only if \c use_memop_in_swap_and_move is \c false_type - default.
    //! @endinternal
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <std::size_t C, typename S>
    varray & operator=(BOOST_RV_REF_3_TEMPL_ARGS(varray, value_type, C, S) other)
    {
        errh::check_capacity(*this, other.size());                                  // may throw

        typedef typename
        vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;

        this->move_assign_dispatch(other, use_memop_in_swap_and_move());

        return *this;
    }

    //! @brief Destructor. Destroys Values stored in this container.
    //!
    //! @par Throws
    //!   Nothing
    //!
    //! @par Complexity
    //!   Linear O(N).
    ~varray()
    {
        namespace sv = varray_detail;
        sv::destroy(this->begin(), this->end());
    }

    //! @brief Swaps contents of the other varray and this one.
    //!
    //! @param other    The varray which content will be swapped with this one's content.
    //!
    //! @par Throws
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws,
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws,
    //! @internal
    //!   @li It throws only if \c use_memop_in_swap_and_move and \c use_optimized_swap are \c false_type - default.
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    void swap(varray & other)
    {
        typedef typename
        vt::use_optimized_swap use_optimized_swap;

        this->swap_dispatch(other, use_optimized_swap());
    }

    //! @pre <tt>other.size() <= capacity() && size() <= other.capacity()</tt>
    //!
    //! @brief Swaps contents of the other varray and this one.
    //!
    //! @param other    The varray which content will be swapped with this one's content.
    //!
    //! @par Throws
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws,
    //!   @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws,
    //! @internal
    //!   @li It throws only if \c use_memop_in_swap_and_move and \c use_optimized_swap are \c false_type - default.
    //! @endinternal
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <std::size_t C, typename S>
    void swap(varray<value_type, C, S> & other)
    {
        errh::check_capacity(*this, other.size());
        errh::check_capacity(other, this->size());

        typedef typename
        vt::use_optimized_swap use_optimized_swap;

        this->swap_dispatch(other, use_optimized_swap()); 
    }

    //! @pre <tt>count <= capacity()</tt>
    //!
    //! @brief Inserts or erases elements at the end such that
    //!   the size becomes count. New elements are value initialized.
    //!
    //! @param count    The number of elements which will be stored in the container.
    //!
    //! @par Throws
    //!   If Value's default constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    void resize(size_type count)
    {
        namespace sv = varray_detail;
        typedef typename vt::disable_trivial_init dti;

        if ( count < m_size )
        {
            sv::destroy(this->begin() + count, this->end());
        }
        else
        {
            errh::check_capacity(*this, count);                                     // may throw

            sv::uninitialized_fill(this->end(), this->begin() + count, dti()); // may throw
        }
        m_size = count; // update end
    }

    //! @pre <tt>count <= capacity()</tt>
    //!
    //! @brief Inserts or erases elements at the end such that
    //!   the size becomes count. New elements are copy constructed from value.
    //!
    //! @param count    The number of elements which will be stored in the container.
    //! @param value    The value used to copy construct the new element.
    //!
    //! @par Throws
    //!   If Value's copy constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    void resize(size_type count, value_type const& value)
    {
        if ( count < m_size )
        {
            namespace sv = varray_detail;
            sv::destroy(this->begin() + count, this->end());
        }
        else
        {
            errh::check_capacity(*this, count);                                     // may throw
            
            std::uninitialized_fill(this->end(), this->begin() + count, value);     // may throw
        }
        m_size = count; // update end
    }

    //! @pre <tt>count <= capacity()</tt>
    //!
    //! @brief This call has no effect because the Capacity of this container is constant.
    //!
    //! @param count    The number of elements which the container should be able to contain.
    //!
    //! @par Throws
    //!   Nothing.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    void reserve(size_type count)
    {
        errh::check_capacity(*this, count);                                         // may throw
    }

    //! @pre <tt>size() < capacity()</tt>
    //!
    //! @brief Adds a copy of value at the end.
    //!
    //! @param value    The value used to copy construct the new element.
    //!
    //! @par Throws
    //!   If Value's copy constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Constant O(1).
    void push_back(value_type const& value)
    {
        typedef typename vt::disable_trivial_init dti;

        errh::check_capacity(*this, m_size + 1);                                    // may throw
        
        namespace sv = varray_detail;
        sv::construct(dti(), this->end(), value);                                          // may throw
        ++m_size; // update end
    }

    //! @pre <tt>size() < capacity()</tt>
    //!
    //! @brief Moves value to the end.
    //!
    //! @param value    The value to move construct the new element.
    //!
    //! @par Throws
    //!   If Value's move constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Constant O(1).
    void push_back(BOOST_RV_REF(value_type) value)
    {
        typedef typename vt::disable_trivial_init dti;

        errh::check_capacity(*this, m_size + 1);                                    // may throw

        namespace sv = varray_detail;
        sv::construct(dti(), this->end(), ::boost::move(value));                                          // may throw
        ++m_size; // update end
    }

    //! @pre <tt>!empty()</tt>
    //!
    //! @brief Destroys last value and decreases the size.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    void pop_back()
    {
        errh::check_empty(*this);

        namespace sv = varray_detail;
        sv::destroy(this->end() - 1);
        --m_size; // update end
    }

    //! @pre
    //!  @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
    //!  @li <tt>size() < capacity()</tt>
    //!
    //! @brief Inserts a copy of element at position.
    //!
    //! @param position    The position at which the new value will be inserted.
    //! @param value       The value used to copy construct the new element.
    //!
    //! @par Throws
    //!   @li If Value's copy constructor or copy assignment throws
    //!   @li If Value's move constructor or move assignment throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Constant or linear.
    iterator insert(iterator position, value_type const& value)
    {
        return this->priv_insert(position, value);
    }

    //! @pre
    //!  @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
    //!  @li <tt>size() < capacity()</tt>
    //!
    //! @brief Inserts a move-constructed element at position.
    //!
    //! @param position    The position at which the new value will be inserted.
    //! @param value       The value used to move construct the new element.
    //!
    //! @par Throws
    //!   If Value's move constructor or move assignment throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Constant or linear.
    iterator insert(iterator position, BOOST_RV_REF(value_type) value)
    {
        return this->priv_insert(position, boost::move(value));
    }

    //! @pre
    //!  @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
    //!  @li <tt>size() + count <= capacity()</tt>
    //!
    //! @brief Inserts a count copies of value at position.
    //!
    //! @param position    The position at which new elements will be inserted.
    //! @param count       The number of new elements which will be inserted.
    //! @param value       The value used to copy construct new elements.
    //!
    //! @par Throws
    //!   @li If Value's copy constructor or copy assignment throws.
    //!   @li If Value's move constructor or move assignment throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    iterator insert(iterator position, size_type count, value_type const& value)
    {
        errh::check_iterator_end_eq(*this, position);
        errh::check_capacity(*this, m_size + count);                                // may throw

        if ( position == this->end() )
        {
            std::uninitialized_fill(position, position + count, value);             // may throw
            m_size += count; // update end
        }
        else
        {
            namespace sv = varray_detail;

            difference_type to_move = std::distance(position, this->end());
            
            // TODO - should following lines check for exception and revert to the old size?

            if ( count < static_cast<size_type>(to_move) )
            {
                sv::uninitialized_move(this->end() - count, this->end(), this->end());          // may throw
                m_size += count; // update end
                sv::move_backward(position, position + to_move - count, this->end() - count);   // may throw
                std::fill_n(position, count, value);                                            // may throw
            }
            else
            {
                std::uninitialized_fill(this->end(), position + count, value);                  // may throw
                m_size += count - to_move; // update end
                sv::uninitialized_move(position, position + to_move, position + count);         // may throw
                m_size += to_move; // update end
                std::fill_n(position, to_move, value);                                          // may throw
            }
        }

        return position;
    }

    //! @pre
    //!  @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
    //!  @li <tt>distance(first, last) <= capacity()</tt>
    //!  @li \c Iterator must meet the \c ForwardTraversalIterator concept.
    //!
    //! @brief Inserts a copy of a range <tt>[first, last)</tt> at position.
    //!
    //! @param position    The position at which new elements will be inserted.
    //! @param first       The iterator to the first element of a range used to construct new elements.
    //! @param last        The iterator to the one after the last element of a range used to construct new elements.
    //!
    //! @par Throws
    //!   @li If Value's constructor and assignment taking a dereferenced \c Iterator.
    //!   @li If Value's move constructor or move assignment throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <typename Iterator>
    iterator insert(iterator position, Iterator first, Iterator last)
    {
        BOOST_CONCEPT_ASSERT((boost_concepts::ForwardTraversal<Iterator>)); // Make sure you passed a ForwardIterator

        typedef typename boost::iterator_traversal<Iterator>::type traversal;
        this->insert_dispatch(position, first, last, traversal());

        return position;
    }

    //! @pre \c position must be a valid iterator of \c *this in range <tt>[begin(), end())</tt>
    //!
    //! @brief Erases Value from position.
    //!
    //! @param position    The position of the element which will be erased from the container.
    //!
    //! @par Throws
    //!   If Value's move assignment throws.
    //!
    //! @par Complexity
    //!   Linear O(N).
    iterator erase(iterator position)
    {
        namespace sv = varray_detail;

        errh::check_iterator_end_neq(*this, position);

        //TODO - add empty check?
        //errh::check_empty(*this);

        sv::move(position + 1, this->end(), position);                              // may throw
        sv::destroy(this->end() - 1);
        --m_size;

        return position;
    }

    //! @pre
    //!  @li \c first and \c last must define a valid range
    //!  @li iterators must be in range <tt>[begin(), end()]</tt>
    //!
    //! @brief Erases Values from a range <tt>[first, last)</tt>.
    //!
    //! @param first    The position of the first element of a range which will be erased from the container.
    //! @param last     The position of the one after the last element of a range which will be erased from the container.
    //!
    //! @par Throws
    //!   If Value's move assignment throws.
    //!
    //! @par Complexity
    //!   Linear O(N).
    iterator erase(iterator first, iterator last)
    {
        namespace sv = varray_detail;

        errh::check_iterator_end_eq(*this, first);
        errh::check_iterator_end_eq(*this, last);
        
        difference_type n = std::distance(first, last);
        
        //TODO - add invalid range check?
        //BOOST_ASSERT_MSG(0 <= n, "invalid range");
        //TODO - add this->size() check?
        //BOOST_ASSERT_MSG(n <= this->size(), "invalid range");

        sv::move(last, this->end(), first);                                         // may throw
        sv::destroy(this->end() - n, this->end());
        m_size -= n;

        return first;
    }

    //! @pre <tt>distance(first, last) <= capacity()</tt>
    //!
    //! @brief Assigns a range <tt>[first, last)</tt> of Values to this container.
    //!
    //! @param first       The iterator to the first element of a range used to construct new content of this container.
    //! @param last        The iterator to the one after the last element of a range used to construct new content of this container.
    //!
    //! @par Throws
    //!   If Value's copy constructor or copy assignment throws,
    //!
    //! @par Complexity
    //!   Linear O(N).
    template <typename Iterator>
    void assign(Iterator first, Iterator last)
    {
        BOOST_CONCEPT_ASSERT((boost_concepts::ForwardTraversal<Iterator>)); // Make sure you passed a ForwardIterator

        typedef typename boost::iterator_traversal<Iterator>::type traversal;
        this->assign_dispatch(first, last, traversal());                            // may throw
    }

    //! @pre <tt>count <= capacity()</tt>
    //!
    //! @brief Assigns a count copies of value to this container.
    //!
    //! @param count       The new number of elements which will be container in the container.
    //! @param value       The value which will be used to copy construct the new content.
    //!
    //! @par Throws
    //!   If Value's copy constructor or copy assignment throws.
    //!
    //! @par Complexity
    //!   Linear O(N).
    void assign(size_type count, value_type const& value)
    {
        if ( count < m_size )
        {
            namespace sv = varray_detail;

            std::fill_n(this->begin(), count, value);                               // may throw
            sv::destroy(this->begin() + count, this->end());
        }
        else
        {
            errh::check_capacity(*this, count);                                     // may throw

            std::fill_n(this->begin(), m_size, value);                              // may throw
            std::uninitialized_fill(this->end(), this->begin() + count, value);     // may throw
        }
        m_size = count; // update end
    }

#if !defined(BOOST_CONTAINER_VARRAY_DISABLE_EMPLACE)
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
    //! @pre <tt>size() < capacity()</tt>
    //!
    //! @brief Inserts a Value constructed with
    //!   \c std::forward<Args>(args)... in the end of the container.
    //!
    //! @param args     The arguments of the constructor of the new element which will be created at the end of the container.
    //!
    //! @par Throws
    //!   If in-place constructor throws or Value's move constructor throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Constant O(1).
    template<class ...Args>
    void emplace_back(BOOST_FWD_REF(Args) ...args)
    {
        typedef typename vt::disable_trivial_init dti;

        errh::check_capacity(*this, m_size + 1);                                    // may throw

        namespace sv = varray_detail;
        sv::construct(dti(), this->end(), ::boost::forward<Args>(args)...);                // may throw
        ++m_size; // update end
    }

    //! @pre
    //!  @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>
    //!  @li <tt>size() < capacity()</tt>
    //!
    //! @brief Inserts a Value constructed with
    //!   \c std::forward<Args>(args)... before position
    //!
    //! @param position The position at which new elements will be inserted.
    //! @param args     The arguments of the constructor of the new element.
    //!
    //! @par Throws
    //!   If in-place constructor throws or if Value's move constructor or move assignment throws.
    //! @internal
    //!   @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
    //! @endinternal
    //!
    //! @par Complexity
    //!   Constant or linear.
    template<class ...Args>
    iterator emplace(iterator position, BOOST_FWD_REF(Args) ...args)
    {
        typedef typename vt::disable_trivial_init dti;

        namespace sv = varray_detail;

        errh::check_iterator_end_eq(*this, position);
        errh::check_capacity(*this, m_size + 1);                                    // may throw

        if ( position == this->end() )
        {
            sv::construct(dti(), position, ::boost::forward<Args>(args)...);               // may throw
            ++m_size; // update end
        }
        else
        {
            // TODO - should following lines check for exception and revert to the old size?

            // TODO - should move be used only if it's nonthrowing?
            value_type & r = *(this->end() - 1);
            sv::construct(dti(), this->end(), boost::move(r));                             // may throw
            ++m_size; // update end
            sv::move_backward(position, this->end() - 2, this->end() - 1);          // may throw

            aligned_storage<sizeof(value_type), alignment_of<value_type>::value> temp_storage;
            value_type * val_p = static_cast<value_type *>(temp_storage.address());
            sv::construct(dti(), val_p, ::boost::forward<Args>(args)...);                  // may throw
            sv::scoped_destructor<value_type> d(val_p);
            sv::assign(position, ::boost::move(*val_p));                            // may throw
        }

        return position;
    }

#else // BOOST_CONTAINER_PERFECT_FORWARDING || BOOST_CONTAINER_DOXYGEN_INVOKED

    #define BOOST_PP_LOCAL_MACRO(n)                                                              \
    BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)       \
    void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                        \
    {                                                                                            \
        typedef typename vt::disable_trivial_init dti;                                           \
                                                                                                 \
        errh::check_capacity(*this, m_size + 1);                                    /*may throw*/\
                                                                                                 \
        namespace sv = varray_detail;                                                     \
        sv::construct(dti(), this->end() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); /*may throw*/\
        ++m_size; /*update end*/                                                                 \
    }                                                                                            \
    //
    #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
    #include BOOST_PP_LOCAL_ITERATE()

    #define BOOST_PP_LOCAL_MACRO(n)                                                                 \
    BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)          \
    iterator emplace(iterator position BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
    {                                                                                               \
        typedef typename vt::disable_trivial_init dti;                                              \
        namespace sv = varray_detail;                                                               \
                                                                                                    \
        errh::check_iterator_end_eq(*this, position);                                               \
        errh::check_capacity(*this, m_size + 1);                                       /*may throw*/\
                                                                                                    \
        if ( position == this->end() )                                                              \
        {                                                                                           \
            sv::construct(dti(), position BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); /*may throw*/\
            ++m_size; /*update end*/                                                                \
        }                                                                                           \
        else                                                                                        \
        {                                                                                           \
            /* TODO - should following lines check for exception and revert to the old size? */     \
            /* TODO - should move be used only if it's nonthrowing? */                              \
                                                                                                    \
            value_type & r = *(this->end() - 1);                                                    \
            sv::construct(dti(), this->end(), boost::move(r));                                /*may throw*/\
            ++m_size; /*update end*/                                                                \
            sv::move_backward(position, this->end() - 2, this->end() - 1);             /*may throw*/\
                                                                                                    \
            aligned_storage<sizeof(value_type), alignment_of<value_type>::value> temp_storage;      \
            value_type * val_p = static_cast<value_type *>(temp_storage.address());                 \
            sv::construct(dti(), val_p BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); /*may throw*/\
            sv::scoped_destructor<value_type> d(val_p);                                             \
            sv::assign(position, ::boost::move(*val_p));                               /*may throw*/\
        }                                                                                           \
                                                                                                    \
        return position;                                                                            \
    }                                                                                               \
    //
    #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
    #include BOOST_PP_LOCAL_ITERATE()

#endif // BOOST_CONTAINER_PERFECT_FORWARDING || BOOST_CONTAINER_DOXYGEN_INVOKED
#endif // !BOOST_CONTAINER_VARRAY_DISABLE_EMPLACE

    //! @brief Removes all elements from the container.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    void clear()
    {
        namespace sv = varray_detail;
        sv::destroy(this->begin(), this->end());
        m_size = 0; // update end
    }

    //! @pre <tt>i < size()</tt>
    //!
    //! @brief Returns reference to the i-th element.
    //!
    //! @param i    The element's index.
    //!
    //! @return reference to the i-th element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   \c std::out_of_range exception by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    reference at(size_type i)
    {
        errh::check_at(*this, i);                                   // may throw
        return *(this->begin() + i);
    }

    //! @pre <tt>i < size()</tt>
    //!
    //! @brief Returns const reference to the i-th element.
    //!
    //! @param i    The element's index.
    //!
    //! @return const reference to the i-th element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   \c std::out_of_range exception by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reference at(size_type i) const
    {
        errh::check_at(*this, i);                                   // may throw
        return *(this->begin() + i);
    }

    //! @pre <tt>i < size()</tt>
    //!
    //! @brief Returns reference to the i-th element.
    //!
    //! @param i    The element's index.
    //!
    //! @return reference to the i-th element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    reference operator[](size_type i)
    {
        // TODO: Remove bounds check? std::vector and std::array operator[] don't check.
        errh::check_operator_brackets(*this, i);
        return *(this->begin() + i);
    }

    //! @pre <tt>i < size()</tt>
    //!
    //! @brief Returns const reference to the i-th element.
    //!
    //! @param i    The element's index.
    //!
    //! @return const reference to the i-th element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reference operator[](size_type i) const
    {
        errh::check_operator_brackets(*this, i);
        return *(this->begin() + i);
    }

    //! @pre \c !empty()
    //!
    //! @brief Returns reference to the first element.
    //!
    //! @return reference to the first element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    reference front()
    {
        errh::check_empty(*this);
        return *(this->begin());
    }

    //! @pre \c !empty()
    //!
    //! @brief Returns const reference to the first element.
    //!
    //! @return const reference to the first element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reference front() const
    {
        errh::check_empty(*this);
        return *(this->begin());
    }

    //! @pre \c !empty()
    //!
    //! @brief Returns reference to the last element.
    //!
    //! @return reference to the last element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    reference back()
    {
        errh::check_empty(*this);
        return *(this->end() - 1);
    }

    //! @pre \c !empty()
    //!
    //! @brief Returns const reference to the first element.
    //!
    //! @return const reference to the last element
    //!   from the beginning of the container.
    //!
    //! @par Throws
    //!   Nothing by default.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reference back() const
    {
        errh::check_empty(*this);
        return *(this->end() - 1);
    }

    //! @brief Pointer such that <tt>[data(), data() + size())</tt> is a valid range.
    //!   For a non-empty vector <tt>data() == &front()</tt>.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    Value * data()
    {
        return boost::addressof(*(this->ptr()));
    }

    //! @brief Const pointer such that <tt>[data(), data() + size())</tt> is a valid range.
    //!   For a non-empty vector <tt>data() == &front()</tt>.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const Value * data() const
    {
        return boost::addressof(*(this->ptr()));
    }

    
    //! @brief Returns iterator to the first element.
    //!
    //! @return iterator to the first element contained in the vector.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    iterator begin() { return this->ptr(); }

    //! @brief Returns const iterator to the first element.
    //!
    //! @return const_iterator to the first element contained in the vector.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_iterator begin() const { return this->ptr(); }

    //! @brief Returns const iterator to the first element.
    //!
    //! @return const_iterator to the first element contained in the vector.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_iterator cbegin() const { return this->ptr(); }

    //! @brief Returns iterator to the one after the last element.
    //!
    //! @return iterator pointing to the one after the last element contained in the vector.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    iterator end() { return this->begin() + m_size; }

    //! @brief Returns const iterator to the one after the last element.
    //!
    //! @return const_iterator pointing to the one after the last element contained in the vector.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_iterator end() const { return this->begin() + m_size; }

    //! @brief Returns const iterator to the one after the last element.
    //!
    //! @return const_iterator pointing to the one after the last element contained in the vector.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_iterator cend() const { return this->cbegin() + m_size; }

    //! @brief Returns reverse iterator to the first element of the reversed container.
    //!
    //! @return reverse_iterator pointing to the beginning
    //! of the reversed varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    reverse_iterator rbegin() { return reverse_iterator(this->end()); }

    //! @brief Returns const reverse iterator to the first element of the reversed container.
    //!
    //! @return const_reverse_iterator pointing to the beginning
    //! of the reversed varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reverse_iterator rbegin() const { return reverse_iterator(this->end()); }

    //! @brief Returns const reverse iterator to the first element of the reversed container.
    //!
    //! @return const_reverse_iterator pointing to the beginning
    //! of the reversed varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reverse_iterator crbegin() const { return reverse_iterator(this->end()); }

    //! @brief Returns reverse iterator to the one after the last element of the reversed container.
    //!
    //! @return reverse_iterator pointing to the one after the last element
    //! of the reversed varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    reverse_iterator rend() { return reverse_iterator(this->begin()); }

    //! @brief Returns const reverse iterator to the one after the last element of the reversed container.
    //!
    //! @return const_reverse_iterator pointing to the one after the last element
    //! of the reversed varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reverse_iterator rend() const { return reverse_iterator(this->begin()); }

    //! @brief Returns const reverse iterator to the one after the last element of the reversed container.
    //!
    //! @return const_reverse_iterator pointing to the one after the last element
    //! of the reversed varray.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    const_reverse_iterator crend() const { return reverse_iterator(this->begin()); }

    //! @brief Returns container's capacity.
    //!
    //! @return container's capacity.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    static size_type capacity() { return Capacity; }

    //! @brief Returns container's capacity.
    //!
    //! @return container's capacity.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    static size_type max_size() { return Capacity; }

    //! @brief Returns the number of stored elements.
    //!
    //! @return Number of elements contained in the container.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    size_type size() const { return m_size; }

    //! @brief Queries if the container contains elements.
    //!
    //! @return true if the number of elements contained in the
    //!   container is equal to 0.
    //!
    //! @par Throws
    //!   Nothing.
    //!
    //! @par Complexity
    //!   Constant O(1).
    bool empty() const { return 0 == m_size; }

private:

    // @par Throws
    //   Nothing.
    // @par Complexity
    //   Linear O(N).
    template <std::size_t C, typename S>
    void move_ctor_dispatch(varray<value_type, C, S> & other, boost::true_type /*use_memop*/)
    {
        ::memcpy(this->data(), other.data(), sizeof(Value) * other.m_size);
        m_size = other.m_size;
    }

    // @par Throws
    //   @li If boost::has_nothrow_move<Value>::value is true and Value's move constructor throws
    //   @li If boost::has_nothrow_move<Value>::value is false and Value's copy constructor throws.
    // @par Complexity
    //   Linear O(N).
    template <std::size_t C, typename S>
    void move_ctor_dispatch(varray<value_type, C, S> & other, boost::false_type /*use_memop*/)
    {
        namespace sv = varray_detail;
        sv::uninitialized_move_if_noexcept(other.begin(), other.end(), this->begin());                  // may throw
        m_size = other.m_size;
    }

    // @par Throws
    //   Nothing.
    // @par Complexity
    //   Linear O(N).
    template <std::size_t C, typename S>
    void move_assign_dispatch(varray<value_type, C, S> & other, boost::true_type /*use_memop*/)
    {
        this->clear();

        ::memcpy(this->data(), other.data(), sizeof(Value) * other.m_size);
        boost::swap(m_size, other.m_size);
    }

    // @par Throws
    //   @li If boost::has_nothrow_move<Value>::value is true and Value's move constructor or move assignment throws
    //   @li If boost::has_nothrow_move<Value>::value is false and Value's copy constructor or move assignment throws.
    // @par Complexity
    //   Linear O(N).
    template <std::size_t C, typename S>
    void move_assign_dispatch(varray<value_type, C, S> & other, boost::false_type /*use_memop*/)
    {
        namespace sv = varray_detail;
        if ( m_size <= static_cast<size_type>(other.size()) )
        {
            sv::move_if_noexcept(other.begin(), other.begin() + m_size, this->begin());             // may throw
            // TODO - perform uninitialized_copy first?
            sv::uninitialized_move_if_noexcept(other.begin() + m_size, other.end(), this->end());   // may throw
        }
        else
        {
            sv::move_if_noexcept(other.begin(), other.end(), this->begin());                        // may throw
            sv::destroy(this->begin() + other.size(), this->end());
        }
        m_size = other.size(); // update end
    }

    // @par Throws
    //   Nothing.
    // @par Complexity
    //   Linear O(N).
    template <std::size_t C, typename S>
    void swap_dispatch(varray<value_type, C, S> & other, boost::true_type const& /*use_optimized_swap*/)
    {
        typedef typename
        boost::mpl::if_c<
            Capacity < C,
            aligned_storage_type,
            typename varray<value_type, C, S>::aligned_storage_type
        >::type
        storage_type;
        
        storage_type temp;
        Value * temp_ptr = reinterpret_cast<Value*>(temp.address());

        ::memcpy(temp_ptr, this->data(), sizeof(Value) * this->size());
        ::memcpy(this->data(), other.data(), sizeof(Value) * other.size());
        ::memcpy(other.data(), temp_ptr, sizeof(Value) * this->size());

        boost::swap(m_size, other.m_size);
    }

    // @par Throws
    //   If Value's move constructor or move assignment throws
    //   but only if use_memop_in_swap_and_move is false_type - default.
    // @par Complexity
    //   Linear O(N).
    template <std::size_t C, typename S>
    void swap_dispatch(varray<value_type, C, S> & other, boost::false_type const& /*use_optimized_swap*/)
    {
        namespace sv = varray_detail;

        typedef typename
        vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;

        if ( this->size() < other.size() )
            swap_dispatch_impl(this->begin(), this->end(), other.begin(), other.end(), use_memop_in_swap_and_move()); // may throw
        else
            swap_dispatch_impl(other.begin(), other.end(), this->begin(), this->end(), use_memop_in_swap_and_move()); // may throw
        boost::swap(m_size, other.m_size);
    }

    // @par Throws
    //   Nothing.
    // @par Complexity
    //   Linear O(N).
    void swap_dispatch_impl(iterator first_sm, iterator last_sm, iterator first_la, iterator last_la, boost::true_type const& /*use_memop*/)
    {
        //BOOST_ASSERT_MSG(std::distance(first_sm, last_sm) <= std::distance(first_la, last_la));

        namespace sv = varray_detail;
        for (; first_sm != last_sm ; ++first_sm, ++first_la)
        {
            boost::aligned_storage<
                sizeof(value_type),
                boost::alignment_of<value_type>::value
            > temp_storage;
            value_type * temp_ptr = reinterpret_cast<value_type*>(temp_storage.address());

            ::memcpy(temp_ptr, boost::addressof(*first_sm), sizeof(value_type));
            ::memcpy(boost::addressof(*first_sm), boost::addressof(*first_la), sizeof(value_type));
            ::memcpy(boost::addressof(*first_la), temp_ptr, sizeof(value_type));
        }

        ::memcpy(first_sm, first_la, sizeof(value_type) * std::distance(first_la, last_la));
    }

    // @par Throws
    //   If Value's move constructor or move assignment throws.
    // @par Complexity
    //   Linear O(N).
    void swap_dispatch_impl(iterator first_sm, iterator last_sm, iterator first_la, iterator last_la, boost::false_type const& /*use_memop*/)
    {
        //BOOST_ASSERT_MSG(std::distance(first_sm, last_sm) <= std::distance(first_la, last_la));

        namespace sv = varray_detail;
        for (; first_sm != last_sm ; ++first_sm, ++first_la)
        {
            //boost::swap(*first_sm, *first_la);                                    // may throw
            value_type temp(boost::move(*first_sm));                                // may throw
            *first_sm = boost::move(*first_la);                                     // may throw
            *first_la = boost::move(temp);                                          // may throw
        }
        sv::uninitialized_move(first_la, last_la, first_sm);                        // may throw
        sv::destroy(first_la, last_la);
    }

    // insert

    // @par Throws
    //   If Value's move constructor or move assignment throws
    //   or if Value's copy assignment throws.
    // @par Complexity
    //   Linear O(N).
    template <typename V>
    iterator priv_insert(iterator position, V & value)
    {
        typedef typename vt::disable_trivial_init dti;
        namespace sv = varray_detail;

        errh::check_iterator_end_eq(*this, position);
        errh::check_capacity(*this, m_size + 1);                                    // may throw

        if ( position == this->end() )
        {
            sv::construct(dti(), position, value);                                         // may throw
            ++m_size; // update end
        }
        else
        {
            // TODO - should following lines check for exception and revert to the old size?

            // TODO - should move be used only if it's nonthrowing?
            value_type & r = *(this->end() - 1);
            sv::construct(dti(), this->end(), boost::move(r));                             // may throw
            ++m_size; // update end
            sv::move_backward(position, this->end() - 2, this->end() - 1);          // may throw
            sv::assign(position, value);                                            // may throw
        }

        return position;
    }

    // insert

    // @par Throws
    //   If Value's move constructor, move assignment throws
    //   or if Value's copy constructor or copy assignment throws.
    // @par Complexity
    //   Linear O(N).
    template <typename Iterator>
    void insert_dispatch(iterator position, Iterator first, Iterator last, boost::random_access_traversal_tag const&)
    {
        BOOST_CONCEPT_ASSERT((boost_concepts::RandomAccessTraversal<Iterator>)); // Make sure you passed a RandomAccessIterator
        
        errh::check_iterator_end_eq(*this, position);
        
        typename boost::iterator_difference<Iterator>::type
            count = std::distance(first, last);

        errh::check_capacity(*this, m_size + count);                                             // may throw

        if ( position == this->end() )
        {
            namespace sv = varray_detail;

            sv::uninitialized_copy(first, last, position);                                      // may throw
            m_size += count; // update end
        }
        else
        {
            this->insert_in_the_middle(position, first, last, count);                           // may throw
        }
    }

    // @par Throws
    //   If Value's move constructor, move assignment throws
    //   or if Value's copy constructor or copy assignment throws.
    // @par Complexity
    //   Linear O(N).
    template <typename Iterator, typename Traversal>
    void insert_dispatch(iterator position, Iterator first, Iterator last, Traversal const& /*not_random_access*/)
    {
        errh::check_iterator_end_eq(*this, position);

        if ( position == this->end() )
        {
            namespace sv = varray_detail;

            std::ptrdiff_t d = std::distance(position, this->begin() + Capacity);
            std::size_t count = sv::uninitialized_copy_s(first, last, position, d);                     // may throw
            
            errh::check_capacity(*this, count <= static_cast<std::size_t>(d) ? m_size + count : Capacity + 1);  // may throw

            m_size += count;
        }
        else
        {
            typename boost::iterator_difference<Iterator>::type
                count = std::distance(first, last);
            
            errh::check_capacity(*this, m_size + count);                                                // may throw

            this->insert_in_the_middle(position, first, last, count);                                   // may throw
        }
    }

    // @par Throws
    //   If Value's move constructor, move assignment throws
    //   or if Value's copy constructor or copy assignment throws.
    // @par Complexity
    //   Linear O(N).
    template <typename Iterator>
    void insert_in_the_middle(iterator position, Iterator first, Iterator last, difference_type count)
    {
        namespace sv = varray_detail;

        difference_type to_move = std::distance(position, this->end());

        // TODO - should following lines check for exception and revert to the old size?

        if ( count < to_move )
        {
            sv::uninitialized_move(this->end() - count, this->end(), this->end());              // may throw
            m_size += count; // update end
            sv::move_backward(position, position + to_move - count, this->end() - count);       // may throw
            sv::copy(first, last, position);                                                    // may throw
        }
        else
        {
            Iterator middle_iter = first;
            std::advance(middle_iter, to_move);

            sv::uninitialized_copy(middle_iter, last, this->end());                             // may throw
            m_size += count - to_move; // update end
            sv::uninitialized_move(position, position + to_move, position + count);             // may throw
            m_size += to_move; // update end
            sv::copy(first, middle_iter, position);                                             // may throw
        }
    }

    // assign

    // @par Throws
    //   If Value's constructor or assignment taking dereferenced Iterator throws.
    // @par Complexity
    //   Linear O(N).
    template <typename Iterator>
    void assign_dispatch(Iterator first, Iterator last, boost::random_access_traversal_tag const& /*not_random_access*/)
    {
        namespace sv = varray_detail;

        typename boost::iterator_difference<Iterator>::type
            s = std::distance(first, last);

        errh::check_capacity(*this, s);                                     // may throw

        if ( m_size <= static_cast<size_type>(s) )
        {
            sv::copy(first, first + m_size, this->begin());                 // may throw
            // TODO - perform uninitialized_copy first?
            sv::uninitialized_copy(first + m_size, last, this->end());      // may throw
        }
        else
        {
            sv::copy(first, last, this->begin());                           // may throw
            sv::destroy(this->begin() + s, this->end());
        }
        m_size = s; // update end
    }

    // @par Throws
    //   If Value's constructor or assignment taking dereferenced Iterator throws.
    // @par Complexity
    //   Linear O(N).
    template <typename Iterator, typename Traversal>
    void assign_dispatch(Iterator first, Iterator last, Traversal const& /*not_random_access*/)
    {
        namespace sv = varray_detail;

        size_type s = 0;
        iterator it = this->begin();

        for ( ; it != this->end() && first != last ; ++it, ++first, ++s )
            *it = *first;                                                                                   // may throw

        sv::destroy(it, this->end());

        std::ptrdiff_t d = std::distance(it, this->begin() + Capacity);
        std::size_t count = sv::uninitialized_copy_s(first, last, it, d);                                   // may throw
        s += count;

        errh::check_capacity(*this, count <= static_cast<std::size_t>(d) ? s : Capacity + 1);               // may throw

        m_size = s; // update end
    }

    pointer ptr()
    {
        return pointer(static_cast<Value*>(m_storage.address()));
    }

    const_pointer ptr() const
    {
        return const_pointer(static_cast<const Value*>(m_storage.address()));
    }

    size_type m_size;
    aligned_storage_type m_storage;
};

#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

template<typename Value, typename Strategy>
class varray<Value, 0, Strategy>
{
    typedef varray_traits<
        Value, 0, Strategy
    > vt;

    typedef typename vt::size_type stored_size_type;
    typedef typename vt::error_handler errh;

public:
    typedef typename vt::value_type value_type;
    typedef stored_size_type size_type;
    typedef typename vt::difference_type difference_type;
    typedef typename vt::pointer pointer;
    typedef typename vt::const_pointer const_pointer;
    typedef typename vt::reference reference;
    typedef typename vt::const_reference const_reference;

    typedef pointer iterator;
    typedef const_pointer const_iterator;
    typedef boost::reverse_iterator<iterator> reverse_iterator;
    typedef boost::reverse_iterator<const_iterator> const_reverse_iterator;

    // nothrow
    varray() {}

    // strong
    explicit varray(size_type count)
    {
        errh::check_capacity(*this, count);                                         // may throw
    }

    // strong
    varray(size_type count, value_type const&)
    {
        errh::check_capacity(*this, count);                                         // may throw
    }

    // strong
    varray(varray const& other)
    {
        //errh::check_capacity(*this, count);
    }

    // strong
    template <size_t C, typename S>
    varray(varray<value_type, C, S> const& other)
    {
        errh::check_capacity(*this, other.size());                                  // may throw
    }

    // strong
    template <typename Iterator>
    varray(Iterator first, Iterator last)
    {
        errh::check_capacity(*this, std::distance(first, last));                    // may throw
    }

    // basic
    varray & operator=(varray const& other)
    {
        //errh::check_capacity(*this, other.size());
        return *this;
    }

    // basic
    template <size_t C, typename S>
    varray & operator=(varray<value_type, C, S> const& other)
    {
        errh::check_capacity(*this, other.size());                                  // may throw
        return *this;
    }

    // nothrow
    ~varray() {}

    // strong
    void resize(size_type count)
    {
        errh::check_capacity(*this, count);                                         // may throw
    }

    // strong
    void resize(size_type count, value_type const&)
    {
        errh::check_capacity(*this, count);                                         // may throw
    }

    
    // nothrow
    void reserve(size_type count)
    {
        errh::check_capacity(*this, count);                                         // may throw
    }

    // strong
    void push_back(value_type const&)
    {
        errh::check_capacity(*this, 1);                                             // may throw
    }

    // nothrow
    void pop_back()
    {
        errh::check_empty(*this);
    }

    // basic
    void insert(iterator position, value_type const&)
    {
        errh::check_iterator_end_eq(*this, position);
        errh::check_capacity(*this, 1);                                             // may throw
    }

    // basic
    void insert(iterator position, size_type count, value_type const&)
    {
        errh::check_iterator_end_eq(*this, position);
        errh::check_capacity(*this, count);                                         // may throw
    }

    // basic
    template <typename Iterator>
    void insert(iterator, Iterator first, Iterator last)
    {
        // TODO - add MPL_ASSERT, check if Iterator is really an iterator
        typedef typename boost::iterator_traversal<Iterator>::type traversal;
        errh::check_capacity(*this, std::distance(first, last));                    // may throw
    }

    // basic
    void erase(iterator position)
    {
        errh::check_iterator_end_neq(*this, position);
    }

    // basic
    void erase(iterator first, iterator last)
    {
        errh::check_iterator_end_eq(*this, first);
        errh::check_iterator_end_eq(*this, last);

        //BOOST_ASSERT_MSG(0 <= n, "invalid range");
    }

    // basic
    template <typename Iterator>
    void assign(Iterator first, Iterator last)
    {
        // TODO - add MPL_ASSERT, check if Iterator is really an iterator
        typedef typename boost::iterator_traversal<Iterator>::type traversal;
        errh::check_capacity(*this, std::distance(first, last));                    // may throw
    }

    // basic
    void assign(size_type count, value_type const&)
    {
        errh::check_capacity(*this, count);                                     // may throw
    }

    // nothrow
    void clear() {}

    // strong
    reference at(size_type i)
    {
        errh::check_at(*this, i);                                   // may throw
        return *(this->begin() + i);
    }

    // strong
    const_reference at(size_type i) const
    {
        errh::check_at(*this, i);                                   // may throw
        return *(this->begin() + i);
    }

    // nothrow
    reference operator[](size_type i)
    {
        errh::check_operator_brackets(*this, i);
        return *(this->begin() + i);
    }

    // nothrow
    const_reference operator[](size_type i) const
    {
        errh::check_operator_brackets(*this, i);
        return *(this->begin() + i);
    }

    // nothrow
    reference front()
    {
        errh::check_empty(*this);
        return *(this->begin());
    }

    // nothrow
    const_reference front() const
    {
        errh::check_empty(*this);
        return *(this->begin());
    }

    // nothrow
    reference back()
    {
        errh::check_empty(*this);
        return *(this->end() - 1);
    }

    // nothrow
    const_reference back() const
    {
        errh::check_empty(*this);
        return *(this->end() - 1);
    }

    // nothrow
    Value * data() { return boost::addressof(*(this->ptr())); }
    const Value * data() const { return boost::addressof(*(this->ptr())); }

    // nothrow
    iterator begin() { return this->ptr(); }
    const_iterator begin() const { return this->ptr(); }
    const_iterator cbegin() const { return this->ptr(); }
    iterator end() { return this->begin(); }
    const_iterator end() const { return this->begin(); }
    const_iterator cend() const { return this->cbegin(); }
    // nothrow
    reverse_iterator rbegin() { return reverse_iterator(this->end()); }
    const_reverse_iterator rbegin() const { return reverse_iterator(this->end()); }
    const_reverse_iterator crbegin() const { return reverse_iterator(this->end()); }
    reverse_iterator rend() { return reverse_iterator(this->begin()); }
    const_reverse_iterator rend() const { return reverse_iterator(this->begin()); }
    const_reverse_iterator crend() const { return reverse_iterator(this->begin()); }

    // nothrow
    size_type capacity() const { return 0; }
    size_type max_size() const { return 0; }
    size_type size() const { return 0; }
    bool empty() const { return true; }

private:

    pointer ptr()
    {
        return pointer(reinterpret_cast<Value*>(this));
    }

    const_pointer ptr() const
    {
        return const_pointer(reinterpret_cast<const Value*>(this));
    }
};

#endif // !BOOST_CONTAINER_DOXYGEN_INVOKED

//! @brief Checks if contents of two varrays are equal.
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @return     \c true if containers have the same size and elements in both containers are equal.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator== (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
    return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin());
}

//! @brief Checks if contents of two varrays are not equal.
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @return     \c true if containers have different size or elements in both containers are not equal.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator!= (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
    return !(x==y);
}

//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @return     \c true if x compares lexicographically less than y.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator< (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
    return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}

//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @return     \c true if y compares lexicographically less than x.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator> (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
    return y<x;
}

//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @return     \c true if y don't compare lexicographically less than x.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator<= (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
    return !(y<x);
}

//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @return     \c true if x don't compare lexicographically less than y.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator>= (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
    return !(x<y);
}

//! @brief Swaps contents of two varrays.
//!
//! This function calls varray::swap().
//!
//! @ingroup varray_non_member
//!
//! @param x    The first varray.
//! @param y    The second varray.
//!
//! @par Complexity
//!   Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
inline void swap(varray<V, C1, S1> & x, varray<V, C2, S2> & y)
{
    x.swap(y);
}

}}} // namespace boost::container::container_detail

#include <boost/container/detail/config_end.hpp>

#endif // BOOST_CONTAINER_DETAIL_VARRAY_HPP