Sophie

Sophie

distrib > Mageia > 5 > i586 > media > core-release > by-pkgid > 82ac505190c212a37e5a9f824939c992 > files > 669

vtk-examples-6.0.0-8.mga5.i586.rpm

//
// This example demonstrates how to use multiple renderers within a
// render window. It is a variation of the Cone.py example. Please
// refer to that example for additional documentation.
//

import java.lang.Thread;

// we import the vtk wrapped classes forst
import vtk.*;

// then we define our class
public class Cone3 {
  // in the static contructor we load in the native code
  // The libraries must be in your path to work
  static {
    System.loadLibrary("vtkCommonJava");
    System.loadLibrary("vtkFilteringJava");
    System.loadLibrary("vtkIOJava");
    System.loadLibrary("vtkImagingJava");
    System.loadLibrary("vtkGraphicsJava");
    System.loadLibrary("vtkRenderingJava");
  }

  // now the main program
  public static void main (String []args) throws Exception {
    //
    // Next we create an instance of vtkConeSource and set some of its
    // properties. The instance of vtkConeSource "cone" is part of a
    // visualization pipeline (it is a source process object); it produces
    // data (output type is vtkPolyData) which other filters may process.
    //
    vtkConeSource cone = new vtkConeSource();
    cone.SetHeight( 3.0 );
    cone.SetRadius( 1.0 );
    cone.SetResolution( 10 );

    //
    // In this example we terminate the pipeline with a mapper process object.
    // (Intermediate filters such as vtkShrinkPolyData could be inserted in
    // between the source and the mapper.)  We create an instance of
    // vtkPolyDataMapper to map the polygonal data into graphics primitives. We
    // connect the output of the cone souece to the input of this mapper.
    //
    vtkPolyDataMapper coneMapper = new vtkPolyDataMapper();
    coneMapper.SetInputConnection(cone.GetOutputPort());

    //
    // Create an actor to represent the cone. The actor orchestrates rendering of
    // the mapper's graphics primitives. An actor also refers to properties via a
    // vtkProperty instance, and includes an internal transformation matrix. We
    // set this actor's mapper to be coneMapper which we created above.
    //
    vtkActor coneActor = new vtkActor();
    coneActor.SetMapper(coneMapper);

    //
    // Create two renderers and assign actors to them. A renderer renders into a
    // viewport within the vtkRenderWindow. It is part or all of a window on the
    // screen and it is responsible for drawing the actors it has.  We also set
    // the background color here. In this example we are adding the same actor
    // to two different renderers; it is okay to add different actors to
    // different renderers as well.
    //
    vtkRenderer ren1 = new vtkRenderer();
    ren1.AddActor(coneActor);
    ren1.SetBackground(0.1, 0.2, 0.4);
    ren1.SetViewport(0.0, 0.0, 0.5, 1.0);

    vtkRenderer ren2 = new vtkRenderer();
    ren2.AddActor(coneActor);
    ren2.SetBackground(0.1, 0.2, 0.4);
    ren2.SetViewport(0.5, 0.0, 1.0, 1.0);

    //
    // Finally we create the render window which will show up on the screen.
    // We add our two renderers into the render window using AddRenderer. We also
    // set the size to be 600 pixels by 300.
    //
    vtkRenderWindow renWin = new vtkRenderWindow();
    renWin.AddRenderer( ren1 );
    renWin.AddRenderer( ren2 );
    renWin.SetSize(600, 300);

    //
    // Make one camera view 90 degrees from other.
    //
    ren1.ResetCamera();
    ren1.GetActiveCamera().Azimuth(90);

    //
    // now we loop over 360 degreeees and render the cone each time
    //
    int i;
    for (i = 0; i < 360; ++i)
      {
      Thread.sleep(10);
      // render the image
      renWin.Render();
      // rotate the active camera by one degree
      ren1.GetActiveCamera().Azimuth( 1 );
      ren2.GetActiveCamera().Azimuth( 1 );
      }
    }
}