Sophie

Sophie

distrib > Mageia > 6 > armv5tl > by-pkgid > 65530c6176058f9b54858c3b4f6385e6 > files > 320

python-django-doc-1.8.19-1.mga6.noarch.rpm

PostgreSQL specific model fields
================================

All of these fields are available from the ``django.contrib.postgres.fields``
module.

.. currentmodule:: django.contrib.postgres.fields

ArrayField
----------

.. class:: ArrayField(base_field, size=None, **options)

    A field for storing lists of data. Most field types can be used, you simply
    pass another field instance as the :attr:`base_field
    <ArrayField.base_field>`. You may also specify a :attr:`size
    <ArrayField.size>`. ``ArrayField`` can be nested to store multi-dimensional
    arrays.

    If you give the field a :attr:`~django.db.models.Field.default`, ensure
    it's a callable such as ``list`` (for an empty default) or a callable that
    returns a list (such as a function). Incorrectly using ``default=[]``
    creates a mutable default that is shared between all instances of
    ``ArrayField``.

    .. attribute:: base_field

        This is a required argument.

        Specifies the underlying data type and behavior for the array. It
        should be an instance of a subclass of
        :class:`~django.db.models.Field`. For example, it could be an
        :class:`~django.db.models.IntegerField` or a
        :class:`~django.db.models.CharField`. Most field types are permitted,
        with the exception of those handling relational data
        (:class:`~django.db.models.ForeignKey`,
        :class:`~django.db.models.OneToOneField` and
        :class:`~django.db.models.ManyToManyField`).

        It is possible to nest array fields - you can specify an instance of
        ``ArrayField`` as the ``base_field``. For example::

            from django.db import models
            from django.contrib.postgres.fields import ArrayField

            class ChessBoard(models.Model):
                board = ArrayField(
                    ArrayField(
                        models.CharField(max_length=10, blank=True),
                        size=8,
                    ),
                    size=8,
                )

        Transformation of values between the database and the model, validation
        of data and configuration, and serialization are all delegated to the
        underlying base field.

    .. attribute:: size

        This is an optional argument.

        If passed, the array will have a maximum size as specified. This will
        be passed to the database, although PostgreSQL at present does not
        enforce the restriction.

.. note::

    When nesting ``ArrayField``, whether you use the `size` parameter or not,
    PostgreSQL requires that the arrays are rectangular::

        from django.contrib.postgres.fields import ArrayField
        from django.db import models

        class Board(models.Model):
            pieces = ArrayField(ArrayField(models.IntegerField()))

        # Valid
        Board(pieces=[
            [2, 3],
            [2, 1],
        ])

        # Not valid
        Board(pieces=[
            [2, 3],
            [2],
        ])

    If irregular shapes are required, then the underlying field should be made
    nullable and the values padded with ``None``.

Querying ArrayField
^^^^^^^^^^^^^^^^^^^

There are a number of custom lookups and transforms for :class:`ArrayField`.
We will use the following example model::

    from django.db import models
    from django.contrib.postgres.fields import ArrayField

    class Post(models.Model):
        name = models.CharField(max_length=200)
        tags = ArrayField(models.CharField(max_length=200), blank=True)

        def __str__(self):  # __unicode__ on Python 2
            return self.name

.. fieldlookup:: arrayfield.contains

contains
~~~~~~~~

The :lookup:`contains` lookup is overridden on :class:`ArrayField`. The
returned objects will be those where the values passed are a subset of the
data. It uses the SQL operator ``@>``. For example::

    >>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
    >>> Post.objects.create(name='Second post', tags=['thoughts'])
    >>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])

    >>> Post.objects.filter(tags__contains=['thoughts'])
    [<Post: First post>, <Post: Second post>]

    >>> Post.objects.filter(tags__contains=['django'])
    [<Post: First post>, <Post: Third post>]

    >>> Post.objects.filter(tags__contains=['django', 'thoughts'])
    [<Post: First post>]

.. fieldlookup:: arrayfield.contained_by

contained_by
~~~~~~~~~~~~

This is the inverse of the :lookup:`contains <arrayfield.contains>` lookup -
the objects returned will be those where the data is a subset of the values
passed. It uses the SQL operator ``<@``. For example::

    >>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
    >>> Post.objects.create(name='Second post', tags=['thoughts'])
    >>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])

    >>> Post.objects.filter(tags__contained_by=['thoughts', 'django'])
    [<Post: First post>, <Post: Second post>]

    >>> Post.objects.filter(tags__contained_by=['thoughts', 'django', 'tutorial'])
    [<Post: First post>, <Post: Second post>, <Post: Third post>]

.. fieldlookup:: arrayfield.overlap

overlap
~~~~~~~

Returns objects where the data shares any results with the values passed. Uses
the SQL operator ``&&``. For example::

    >>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
    >>> Post.objects.create(name='Second post', tags=['thoughts'])
    >>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])

    >>> Post.objects.filter(tags__overlap=['thoughts'])
    [<Post: First post>, <Post: Second post>]

    >>> Post.objects.filter(tags__overlap=['thoughts', 'tutorial'])
    [<Post: First post>, <Post: Second post>, <Post: Third post>]

.. fieldlookup:: arrayfield.len

len
~~~

Returns the length of the array. The lookups available afterwards are those
available for :class:`~django.db.models.IntegerField`. For example::

    >>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
    >>> Post.objects.create(name='Second post', tags=['thoughts'])

    >>> Post.objects.filter(tags__len=1)
    [<Post: Second post>]

.. fieldlookup:: arrayfield.index

Index transforms
~~~~~~~~~~~~~~~~

This class of transforms allows you to index into the array in queries. Any
non-negative integer can be used. There are no errors if it exceeds the
:attr:`size <ArrayField.size>` of the array. The lookups available after the
transform are those from the :attr:`base_field <ArrayField.base_field>`. For
example::

    >>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
    >>> Post.objects.create(name='Second post', tags=['thoughts'])

    >>> Post.objects.filter(tags__0='thoughts')
    [<Post: First post>, <Post: Second post>]

    >>> Post.objects.filter(tags__1__iexact='Django')
    [<Post: First post>]

    >>> Post.objects.filter(tags__276='javascript')
    []

.. note::

    PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
    However these indexes and those used in :lookup:`slices <arrayfield.slice>`
    use 0-based indexing to be consistent with Python.

.. fieldlookup:: arrayfield.slice

Slice transforms
~~~~~~~~~~~~~~~~

This class of transforms allow you to take a slice of the array. Any two
non-negative integers can be used, separated by a single underscore. The
lookups available after the transform do not change. For example::

    >>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
    >>> Post.objects.create(name='Second post', tags=['thoughts'])
    >>> Post.objects.create(name='Third post', tags=['django', 'python', 'thoughts'])

    >>> Post.objects.filter(tags__0_1=['thoughts'])
    [<Post: First post>, <Post: Second post>]

    >>> Post.objects.filter(tags__0_2__contains=['thoughts'])
    [<Post: First post>, <Post: Second post>]

.. note::

    PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
    However these slices and those used in :lookup:`indexes <arrayfield.index>`
    use 0-based indexing to be consistent with Python.

.. admonition:: Multidimensional arrays with indexes and slices

    PostgreSQL has some rather esoteric behavior when using indexes and slices
    on multidimensional arrays. It will always work to use indexes to reach
    down to the final underlying data, but most other slices behave strangely
    at the database level and cannot be supported in a logical, consistent
    fashion by Django.

Indexing ArrayField
^^^^^^^^^^^^^^^^^^^

At present using :attr:`~django.db.models.Field.db_index` will create a
``btree`` index. This does not offer particularly significant help to querying.
A more useful index is a ``GIN`` index, which you should create using a
:class:`~django.db.migrations.operations.RunSQL` operation.

HStoreField
-----------

.. class:: HStoreField(**options)

    A field for storing mappings of strings to strings. The Python data type
    used is a ``dict``.

    To use this field, you'll need to:

    1. Add ``'django.contrib.postgres'`` in your :setting:`INSTALLED_APPS`.
    2. Setup the hstore extension in PostgreSQL before the first ``CreateModel``
       or ``AddField`` operation by adding a migration with the
       :class:`~django.contrib.postgres.operations.HStoreExtension` operation.
       For example::

            from django.contrib.postgres.operations import HStoreExtension

            class Migration(migrations.Migration):
                ...

                operations = [
                    HStoreExtension(),
                    ...
                ]

       Creating the extension requires a database user with superuser
       privileges. If the Django database user doesn't have superuser
       privileges, you'll have to create the extension outside of Django
       migrations with a user that has the appropriate privileges. In that
       case, connect to your Django database and run the query
       ``CREATE EXTENSION IF NOT EXISTS hstore;``

    You'll see an error like ``can't adapt type 'dict'`` if you skip the first
    step, or ``type "hstore" does not exist`` if you skip the second.

.. note::

    On occasions it may be useful to require or restrict the keys which are
    valid for a given field. This can be done using the
    :class:`~django.contrib.postgres.validators.KeysValidator`.

Querying HStoreField
^^^^^^^^^^^^^^^^^^^^

In addition to the ability to query by key, there are a number of custom
lookups available for ``HStoreField``.

We will use the following example model::

    from django.contrib.postgres.fields import HStoreField
    from django.db import models

    class Dog(models.Model):
        name = models.CharField(max_length=200)
        data = HStoreField()

        def __str__(self):  # __unicode__ on Python 2
            return self.name

.. fieldlookup:: hstorefield.key

Key lookups
~~~~~~~~~~~

To query based on a given key, you simply use that key as the lookup name::

    >>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie'})

    >>> Dog.objects.filter(data__breed='collie')
    [<Dog: Meg>]

You can chain other lookups after key lookups::

    >>> Dog.objects.filter(data__breed__contains='l')
    [<Dog: Rufus>, <Dog: Meg>]

If the key you wish to query by clashes with the name of another lookup, you
need to use the :lookup:`hstorefield.contains` lookup instead.

.. warning::

    Since any string could be a key in a hstore value, any lookup other than
    those listed below will be interpreted as a key lookup. No errors are
    raised. Be extra careful for typing mistakes, and always check your queries
    work as you intend.

.. fieldlookup:: hstorefield.contains

contains
~~~~~~~~

The :lookup:`contains` lookup is overridden on
:class:`~django.contrib.postgres.fields.HStoreField`. The returned objects are
those where the given ``dict`` of key-value pairs are all contained in the
field. It uses the SQL operator ``@>``. For example::

    >>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
    >>> Dog.objects.create(name='Fred', data={})

    >>> Dog.objects.filter(data__contains={'owner': 'Bob'})
    [<Dog: Rufus>, <Dog: Meg>]

    >>> Dog.objects.filter(data__contains={'breed': 'collie'})
    [<Dog: Meg>]

.. fieldlookup:: hstorefield.contained_by

contained_by
~~~~~~~~~~~~

This is the inverse of the :lookup:`contains <hstorefield.contains>` lookup -
the objects returned will be those where the key-value pairs on the object are
a subset of those in the value passed. It uses the SQL operator ``<@``. For
example::

    >>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
    >>> Dog.objects.create(name='Fred', data={})

    >>> Dog.objects.filter(data__contained_by={'breed': 'collie', 'owner': 'Bob'})
    [<Dog: Meg>, <Dog: Fred>]

    >>> Dog.objects.filter(data__contained_by={'breed': 'collie'})
    [<Dog: Fred>]

.. fieldlookup:: hstorefield.has_key

has_key
~~~~~~~

Returns objects where the given key is in the data. Uses the SQL operator
``?``. For example::

    >>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

    >>> Dog.objects.filter(data__has_key='owner')
    [<Dog: Meg>]

.. fieldlookup:: hstorefield.has_keys

has_keys
~~~~~~~~

Returns objects where all of the given keys are in the data. Uses the SQL operator
``?&``. For example::

    >>> Dog.objects.create(name='Rufus', data={})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

    >>> Dog.objects.filter(data__has_keys=['breed', 'owner'])
    [<Dog: Meg>]

.. fieldlookup:: hstorefield.keys

keys
~~~~

Returns objects where the array of keys is the given value. Note that the order
is not guaranteed to be reliable, so this transform is mainly useful for using
in conjunction with lookups on
:class:`~django.contrib.postgres.fields.ArrayField`. Uses the SQL function
``akeys()``. For example::

    >>> Dog.objects.create(name='Rufus', data={'toy': 'bone'})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

    >>> Dog.objects.filter(data__keys__overlap=['breed', 'toy'])
    [<Dog: Rufus>, <Dog: Meg>]

.. fieldlookup:: hstorefield.values

values
~~~~~~

Returns objects where the array of values is the given value. Note that the
order is not guaranteed to be reliable, so this transform is mainly useful for
using in conjunction with lookups on
:class:`~django.contrib.postgres.fields.ArrayField`. Uses the SQL function
``avalues()``. For example::

    >>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
    >>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})

    >>> Dog.objects.filter(data__values__contains=['collie'])
    [<Dog: Meg>]

.. _range-fields:

Range Fields
------------

There are five range field types, corresponding to the built-in range types in
PostgreSQL. These fields are used to store a range of values; for example the
start and end timestamps of an event, or the range of ages an activity is
suitable for.

All of the range fields translate to :ref:`psycopg2 Range objects
<psycopg2:adapt-range>` in python, but also accept tuples as input if no bounds
information is necessary. The default is lower bound included, upper bound
excluded.

IntegerRangeField
^^^^^^^^^^^^^^^^^

.. class:: IntegerRangeField(**options)

    Stores a range of integers. Based on an
    :class:`~django.db.models.IntegerField`. Represented by an ``int4range`` in
    the database and a :class:`~psycopg2:psycopg2.extras.NumericRange` in
    Python.

BigIntegerRangeField
^^^^^^^^^^^^^^^^^^^^

.. class:: BigIntegerRangeField(**options)

    Stores a range of large integers. Based on a
    :class:`~django.db.models.BigIntegerField`. Represented by an ``int8range``
    in the database and a :class:`~psycopg2:psycopg2.extras.NumericRange` in
    Python.

FloatRangeField
^^^^^^^^^^^^^^^

.. class:: FloatRangeField(**options)

    Stores a range of floating point values. Based on a
    :class:`~django.db.models.FloatField`. Represented by a ``numrange`` in the
    database and a :class:`~psycopg2:psycopg2.extras.NumericRange` in Python.

DateTimeRangeField
^^^^^^^^^^^^^^^^^^

.. class:: DateTimeRangeField(**options)

    Stores a range of timestamps. Based on a
    :class:`~django.db.models.DateTimeField`. Represented by a ``tztsrange`` in
    the database and a :class:`~psycopg2:psycopg2.extras.DateTimeTZRange` in
    Python.

DateRangeField
^^^^^^^^^^^^^^

.. class:: DateRangeField(**options)

    Stores a range of dates. Based on a
    :class:`~django.db.models.DateField`. Represented by a ``daterange`` in the
    database and a :class:`~psycopg2:psycopg2.extras.DateRange` in Python.

Querying Range Fields
^^^^^^^^^^^^^^^^^^^^^

There are a number of custom lookups and transforms for range fields. They are
available on all the above fields, but we will use the following example
model::

    from django.contrib.postgres.fields import IntegerRangeField
    from django.db import models

    class Event(models.Model):
        name = models.CharField(max_length=200)
        ages = IntegerRangeField()

        def __str__(self):  # __unicode__ on Python 2
            return self.name

We will also use the following example objects::

    >>> Event.objects.create(name='Soft play', ages=(0, 10))
    >>> Event.objects.create(name='Pub trip', ages=(21, None))

and ``NumericRange``:

    >>> from psycopg2.extras import NumericRange

Containment functions
~~~~~~~~~~~~~~~~~~~~~

As with other PostgreSQL fields, there are three standard containment
operators: ``contains``, ``contained_by`` and ``overlap``, using the SQL
operators ``@>``, ``<@``, and ``&&`` respectively.

.. fieldlookup:: rangefield.contains

contains
''''''''

    >>> Event.objects.filter(ages__contains=NumericRange(4, 5))
    [<Event: Soft play>]

.. fieldlookup:: rangefield.contained_by

contained_by
''''''''''''

    >>> Event.objects.filter(ages__contained_by=NumericRange(0, 15))
    [<Event: Soft play>]

.. fieldlookup:: rangefield.overlap

overlap
'''''''

    >>> Event.objects.filter(ages__overlap=NumericRange(8, 12))
    [<Event: Soft play>]

Comparison functions
~~~~~~~~~~~~~~~~~~~~

Range fields support the standard lookups: :lookup:`lt`, :lookup:`gt`,
:lookup:`lte` and :lookup:`gte`. These are not particularly helpful - they
compare the lower bounds first and then the upper bounds only if necessary.
This is also the strategy used to order by a range field. It is better to use
the specific range comparison operators.

.. fieldlookup:: rangefield.fully_lt

fully_lt
''''''''

The returned ranges are strictly less than the passed range. In other words,
all the points in the returned range are less than all those in the passed
range.

    >>> Event.objects.filter(ages__fully_lt=NumericRange(11, 15))
    [<Event: Soft play>]

.. fieldlookup:: rangefield.fully_gt

fully_gt
''''''''

The returned ranges are strictly greater than the passed range. In other words,
the all the points in the returned range are greater than all those in the
passed range.

    >>> Event.objects.filter(ages__fully_gt=NumericRange(11, 15))
    [<Event: Pub trip>]

.. fieldlookup:: rangefield.not_lt

not_lt
''''''

The returned ranges do not contain any points less than the passed range, that
is the lower bound of the returned range is at least the lower bound of the
passed range.

    >>> Event.objects.filter(ages__not_lt=NumericRange(0, 15))
    [<Event: Soft play>, <Event: Pub trip>]

.. fieldlookup:: rangefield.not_gt

not_gt
''''''

The returned ranges do not contain any points greater than the passed range, that
is the upper bound of the returned range is at most the upper bound of the
passed range.

    >>> Event.objects.filter(ages__not_gt=NumericRange(3, 10))
    [<Event: Soft play>]

.. fieldlookup:: rangefield.adjacent_to

adjacent_to
'''''''''''

The returned ranges share a bound with the passed range.

    >>> Event.objects.filter(ages__adjacent_to=NumericRange(10, 21))
    [<Event: Soft play>, <Event: Pub trip>]

Querying using the bounds
~~~~~~~~~~~~~~~~~~~~~~~~~

There are three transforms available for use in queries. You can extract the
lower or upper bound, or query based on emptiness.

.. fieldlookup:: rangefield.startswith

startswith
''''''''''

Returned objects have the given lower bound. Can be chained to valid lookups
for the base field.

    >>> Event.objects.filter(ages__startswith=21)
    [<Event: Pub trip>]

.. fieldlookup:: rangefield.endswith

endswith
''''''''

Returned objects have the given upper bound. Can be chained to valid lookups
for the base field.

    >>> Event.objects.filter(ages__endswith=10)
    [<Event: Soft play>]

.. fieldlookup:: rangefield.isempty

isempty
'''''''

Returned objects are empty ranges. Can be chained to valid lookups for a
:class:`~django.db.models.BooleanField`.

    >>> Event.objects.filter(ages__isempty=True)
    []

Defining your own range types
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PostgreSQL allows the definition of custom range types. Django's model and form
field implementations use base classes below, and psycopg2 provides a
:func:`~psycopg2:psycopg2.extras.register_range` to allow use of custom range
types.

.. class:: RangeField(**options)

    Base class for model range fields.

    .. attribute:: base_field

        The model field to use.

    .. attribute:: range_type

        The psycopg2 range type to use.

    .. attribute:: form_field

        The form field class to use. Should be a subclass of
        :class:`django.contrib.postgres.forms.BaseRangeField`.

.. class:: django.contrib.postgres.forms.BaseRangeField

    Base class for form range fields.

    .. attribute:: base_field

        The form field to use.

    .. attribute:: range_type

        The psycopg2 range type to use.