Sophie

Sophie

distrib > Mageia > 6 > armv7hl > media > core-updates > by-pkgid > 4e2dbb669434a7691662cb2f0ad38972 > files > 11572

rust-doc-1.28.0-1.mga6.armv7hl.rpm

<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source to the Rust file `libcore/num/dec2flt/algorithm.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>algorithm.rs.html -- source</title><link rel="stylesheet" type="text/css" href="../../../../normalize.css"><link rel="stylesheet" type="text/css" href="../../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" type="text/css" href="../../../../dark.css"><link rel="stylesheet" type="text/css" href="../../../../light.css" id="themeStyle"><script src="../../../../storage.js"></script><link rel="shortcut icon" href="https://doc.rust-lang.org/favicon.ico"></head><body class="rustdoc source"><!--[if lte IE 8]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><div class="sidebar-menu">&#9776;</div><a href='../../../../core/index.html'><img src='https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png' alt='logo' width='100'></a></nav><div class="theme-picker"><button id="theme-picker" aria-label="Pick another theme!"><img src="../../../../brush.svg" width="18" alt="Pick another theme!"></button><div id="theme-choices"></div></div><script src="../../../../theme.js"></script><nav class="sub"><form class="search-form js-only"><div class="search-container"><input class="search-input" name="search" autocomplete="off" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><a id="settings-menu" href="../../../../settings.html"><img src="../../../../wheel.svg" width="18" alt="Change settings"></a></div></form></nav><section id="main" class="content"><pre class="line-numbers"><span id="1">  1</span>
<span id="2">  2</span>
<span id="3">  3</span>
<span id="4">  4</span>
<span id="5">  5</span>
<span id="6">  6</span>
<span id="7">  7</span>
<span id="8">  8</span>
<span id="9">  9</span>
<span id="10"> 10</span>
<span id="11"> 11</span>
<span id="12"> 12</span>
<span id="13"> 13</span>
<span id="14"> 14</span>
<span id="15"> 15</span>
<span id="16"> 16</span>
<span id="17"> 17</span>
<span id="18"> 18</span>
<span id="19"> 19</span>
<span id="20"> 20</span>
<span id="21"> 21</span>
<span id="22"> 22</span>
<span id="23"> 23</span>
<span id="24"> 24</span>
<span id="25"> 25</span>
<span id="26"> 26</span>
<span id="27"> 27</span>
<span id="28"> 28</span>
<span id="29"> 29</span>
<span id="30"> 30</span>
<span id="31"> 31</span>
<span id="32"> 32</span>
<span id="33"> 33</span>
<span id="34"> 34</span>
<span id="35"> 35</span>
<span id="36"> 36</span>
<span id="37"> 37</span>
<span id="38"> 38</span>
<span id="39"> 39</span>
<span id="40"> 40</span>
<span id="41"> 41</span>
<span id="42"> 42</span>
<span id="43"> 43</span>
<span id="44"> 44</span>
<span id="45"> 45</span>
<span id="46"> 46</span>
<span id="47"> 47</span>
<span id="48"> 48</span>
<span id="49"> 49</span>
<span id="50"> 50</span>
<span id="51"> 51</span>
<span id="52"> 52</span>
<span id="53"> 53</span>
<span id="54"> 54</span>
<span id="55"> 55</span>
<span id="56"> 56</span>
<span id="57"> 57</span>
<span id="58"> 58</span>
<span id="59"> 59</span>
<span id="60"> 60</span>
<span id="61"> 61</span>
<span id="62"> 62</span>
<span id="63"> 63</span>
<span id="64"> 64</span>
<span id="65"> 65</span>
<span id="66"> 66</span>
<span id="67"> 67</span>
<span id="68"> 68</span>
<span id="69"> 69</span>
<span id="70"> 70</span>
<span id="71"> 71</span>
<span id="72"> 72</span>
<span id="73"> 73</span>
<span id="74"> 74</span>
<span id="75"> 75</span>
<span id="76"> 76</span>
<span id="77"> 77</span>
<span id="78"> 78</span>
<span id="79"> 79</span>
<span id="80"> 80</span>
<span id="81"> 81</span>
<span id="82"> 82</span>
<span id="83"> 83</span>
<span id="84"> 84</span>
<span id="85"> 85</span>
<span id="86"> 86</span>
<span id="87"> 87</span>
<span id="88"> 88</span>
<span id="89"> 89</span>
<span id="90"> 90</span>
<span id="91"> 91</span>
<span id="92"> 92</span>
<span id="93"> 93</span>
<span id="94"> 94</span>
<span id="95"> 95</span>
<span id="96"> 96</span>
<span id="97"> 97</span>
<span id="98"> 98</span>
<span id="99"> 99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
</pre><pre class="rust ">
<span class="comment">// Copyright 2015 The Rust Project Developers. See the COPYRIGHT</span>
<span class="comment">// file at the top-level directory of this distribution and at</span>
<span class="comment">// http://rust-lang.org/COPYRIGHT.</span>
<span class="comment">//</span>
<span class="comment">// Licensed under the Apache License, Version 2.0 &lt;LICENSE-APACHE or</span>
<span class="comment">// http://www.apache.org/licenses/LICENSE-2.0&gt; or the MIT license</span>
<span class="comment">// &lt;LICENSE-MIT or http://opensource.org/licenses/MIT&gt;, at your</span>
<span class="comment">// option. This file may not be copied, modified, or distributed</span>
<span class="comment">// except according to those terms.</span>

<span class="doccomment">//! The various algorithms from the paper.</span>

<span class="kw">use</span> <span class="ident">cmp</span>::<span class="ident">min</span>;
<span class="kw">use</span> <span class="ident">cmp</span>::<span class="ident">Ordering</span>::{<span class="ident">Less</span>, <span class="ident">Equal</span>, <span class="ident">Greater</span>};
<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">diy_float</span>::<span class="ident">Fp</span>;
<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">dec2flt</span>::<span class="ident">table</span>;
<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">dec2flt</span>::<span class="ident">rawfp</span>::{<span class="self">self</span>, <span class="ident">Unpacked</span>, <span class="ident">RawFloat</span>, <span class="ident">fp_to_float</span>, <span class="ident">next_float</span>, <span class="ident">prev_float</span>};
<span class="kw">use</span> <span class="ident">num</span>::<span class="ident">dec2flt</span>::<span class="ident">num</span>::{<span class="self">self</span>, <span class="ident">Big</span>};

<span class="doccomment">/// Number of significand bits in Fp</span>
<span class="kw">const</span> <span class="ident">P</span>: <span class="ident">u32</span> <span class="op">=</span> <span class="number">64</span>;

<span class="comment">// We simply store the best approximation for *all* exponents, so the variable &quot;h&quot; and the</span>
<span class="comment">// associated conditions can be omitted. This trades performance for a couple kilobytes of space.</span>

<span class="kw">fn</span> <span class="ident">power_of_ten</span>(<span class="ident">e</span>: <span class="ident">i16</span>) <span class="op">-&gt;</span> <span class="ident">Fp</span> {
    <span class="macro">assert</span><span class="macro">!</span>(<span class="ident">e</span> <span class="op">&gt;=</span> <span class="ident">table</span>::<span class="ident">MIN_E</span>);
    <span class="kw">let</span> <span class="ident">i</span> <span class="op">=</span> <span class="ident">e</span> <span class="op">-</span> <span class="ident">table</span>::<span class="ident">MIN_E</span>;
    <span class="kw">let</span> <span class="ident">sig</span> <span class="op">=</span> <span class="ident">table</span>::<span class="ident">POWERS</span>.<span class="number">0</span>[<span class="ident">i</span> <span class="kw">as</span> <span class="ident">usize</span>];
    <span class="kw">let</span> <span class="ident">exp</span> <span class="op">=</span> <span class="ident">table</span>::<span class="ident">POWERS</span>.<span class="number">1</span>[<span class="ident">i</span> <span class="kw">as</span> <span class="ident">usize</span>];
    <span class="ident">Fp</span> { <span class="ident">f</span>: <span class="ident">sig</span>, <span class="ident">e</span>: <span class="ident">exp</span> }
}

<span class="comment">// In most architectures, floating point operations have an explicit bit size, therefore the</span>
<span class="comment">// precision of the computation is determined on a per-operation basis.</span>
<span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">any</span>(<span class="ident">not</span>(<span class="ident">target_arch</span><span class="op">=</span><span class="string">&quot;x86&quot;</span>), <span class="ident">target_feature</span><span class="op">=</span><span class="string">&quot;sse2&quot;</span>))]</span>
<span class="kw">mod</span> <span class="ident">fpu_precision</span> {
    <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">set_precision</span><span class="op">&lt;</span><span class="ident">T</span><span class="op">&gt;</span>() { }
}

<span class="comment">// On x86, the x87 FPU is used for float operations if the SSE/SSE2 extensions are not available.</span>
<span class="comment">// The x87 FPU operates with 80 bits of precision by default, which means that operations will</span>
<span class="comment">// round to 80 bits causing double rounding to happen when values are eventually represented as</span>
<span class="comment">// 32/64 bit float values. To overcome this, the FPU control word can be set so that the</span>
<span class="comment">// computations are performed in the desired precision.</span>
<span class="attribute">#[<span class="ident">cfg</span>(<span class="ident">all</span>(<span class="ident">target_arch</span><span class="op">=</span><span class="string">&quot;x86&quot;</span>, <span class="ident">not</span>(<span class="ident">target_feature</span><span class="op">=</span><span class="string">&quot;sse2&quot;</span>)))]</span>
<span class="kw">mod</span> <span class="ident">fpu_precision</span> {
    <span class="kw">use</span> <span class="ident">mem</span>::<span class="ident">size_of</span>;

    <span class="doccomment">/// A structure used to preserve the original value of the FPU control word, so that it can be</span>
    <span class="doccomment">/// restored when the structure is dropped.</span>
    <span class="doccomment">///</span>
    <span class="doccomment">/// The x87 FPU is a 16-bits register whose fields are as follows:</span>
    <span class="doccomment">///</span>
    <span class="doccomment">/// | 12-15 | 10-11 | 8-9 | 6-7 |  5 |  4 |  3 |  2 |  1 |  0 |</span>
    <span class="doccomment">/// |------:|------:|----:|----:|---:|---:|---:|---:|---:|---:|</span>
    <span class="doccomment">/// |       | RC    | PC  |     | PM | UM | OM | ZM | DM | IM |</span>
    <span class="doccomment">///</span>
    <span class="doccomment">/// The documentation for all of the fields is available in the IA-32 Architectures Software</span>
    <span class="doccomment">/// Developer&#39;s Manual (Volume 1).</span>
    <span class="doccomment">///</span>
    <span class="doccomment">/// The only field which is relevant for the following code is PC, Precision Control. This</span>
    <span class="doccomment">/// field determines the precision of the operations performed by the  FPU. It can be set to:</span>
    <span class="doccomment">///  - 0b00, single precision i.e. 32-bits</span>
    <span class="doccomment">///  - 0b10, double precision i.e. 64-bits</span>
    <span class="doccomment">///  - 0b11, double extended precision i.e. 80-bits (default state)</span>
    <span class="doccomment">/// The 0b01 value is reserved and should not be used.</span>
    <span class="kw">pub</span> <span class="kw">struct</span> <span class="ident">FPUControlWord</span>(<span class="ident">u16</span>);

    <span class="kw">fn</span> <span class="ident">set_cw</span>(<span class="ident">cw</span>: <span class="ident">u16</span>) {
        <span class="kw">unsafe</span> { <span class="macro">asm</span><span class="macro">!</span>(<span class="string">&quot;fldcw $0&quot;</span> :: <span class="string">&quot;m&quot;</span> (<span class="ident">cw</span>) :: <span class="string">&quot;volatile&quot;</span>) }
    }

    <span class="doccomment">/// Set the precision field of the FPU to `T` and return a `FPUControlWord`</span>
    <span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">set_precision</span><span class="op">&lt;</span><span class="ident">T</span><span class="op">&gt;</span>() <span class="op">-&gt;</span> <span class="ident">FPUControlWord</span> {
        <span class="kw">let</span> <span class="ident">cw</span> <span class="op">=</span> <span class="number">0u16</span>;

        <span class="comment">// Compute the value for the Precision Control field that is appropriate for `T`.</span>
        <span class="kw">let</span> <span class="ident">cw_precision</span> <span class="op">=</span> <span class="kw">match</span> <span class="ident">size_of</span>::<span class="op">&lt;</span><span class="ident">T</span><span class="op">&gt;</span>() {
            <span class="number">4</span> <span class="op">=&gt;</span> <span class="number">0x0000</span>, <span class="comment">// 32 bits</span>
            <span class="number">8</span> <span class="op">=&gt;</span> <span class="number">0x0200</span>, <span class="comment">// 64 bits</span>
            <span class="kw">_</span> <span class="op">=&gt;</span> <span class="number">0x0300</span>, <span class="comment">// default, 80 bits</span>
        };

        <span class="comment">// Get the original value of the control word to restore it later, when the</span>
        <span class="comment">// `FPUControlWord` structure is dropped</span>
        <span class="kw">unsafe</span> { <span class="macro">asm</span><span class="macro">!</span>(<span class="string">&quot;fnstcw $0&quot;</span> : <span class="string">&quot;=*m&quot;</span> (<span class="kw-2">&amp;</span><span class="ident">cw</span>) ::: <span class="string">&quot;volatile&quot;</span>) }

        <span class="comment">// Set the control word to the desired precision. This is achieved by masking away the old</span>
        <span class="comment">// precision (bits 8 and 9, 0x300) and replacing it with the precision flag computed above.</span>
        <span class="ident">set_cw</span>((<span class="ident">cw</span> <span class="op">&amp;</span> <span class="number">0xFCFF</span>) <span class="op">|</span> <span class="ident">cw_precision</span>);

        <span class="ident">FPUControlWord</span>(<span class="ident">cw</span>)
    }

    <span class="kw">impl</span> <span class="ident">Drop</span> <span class="kw">for</span> <span class="ident">FPUControlWord</span> {
        <span class="kw">fn</span> <span class="ident">drop</span>(<span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="self">self</span>) {
            <span class="ident">set_cw</span>(<span class="self">self</span>.<span class="number">0</span>)
        }
    }
}

<span class="doccomment">/// The fast path of Bellerophon using machine-sized integers and floats.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// This is extracted into a separate function so that it can be attempted before constructing</span>
<span class="doccomment">/// a bignum.</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">fast_path</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">integral</span>: <span class="kw-2">&amp;</span>[<span class="ident">u8</span>], <span class="ident">fractional</span>: <span class="kw-2">&amp;</span>[<span class="ident">u8</span>], <span class="ident">e</span>: <span class="ident">i64</span>) <span class="op">-&gt;</span> <span class="prelude-ty">Option</span><span class="op">&lt;</span><span class="ident">T</span><span class="op">&gt;</span> {
    <span class="kw">let</span> <span class="ident">num_digits</span> <span class="op">=</span> <span class="ident">integral</span>.<span class="ident">len</span>() <span class="op">+</span> <span class="ident">fractional</span>.<span class="ident">len</span>();
    <span class="comment">// log_10(f64::MAX_SIG) ~ 15.95. We compare the exact value to MAX_SIG near the end,</span>
    <span class="comment">// this is just a quick, cheap rejection (and also frees the rest of the code from</span>
    <span class="comment">// worrying about underflow).</span>
    <span class="kw">if</span> <span class="ident">num_digits</span> <span class="op">&gt;</span> <span class="number">16</span> {
        <span class="kw">return</span> <span class="prelude-val">None</span>;
    }
    <span class="kw">if</span> <span class="ident">e</span>.<span class="ident">abs</span>() <span class="op">&gt;=</span> <span class="ident">T</span>::<span class="ident">CEIL_LOG5_OF_MAX_SIG</span> <span class="kw">as</span> <span class="ident">i64</span> {
        <span class="kw">return</span> <span class="prelude-val">None</span>;
    }
    <span class="kw">let</span> <span class="ident">f</span> <span class="op">=</span> <span class="ident">num</span>::<span class="ident">from_str_unchecked</span>(<span class="ident">integral</span>.<span class="ident">iter</span>().<span class="ident">chain</span>(<span class="ident">fractional</span>.<span class="ident">iter</span>()));
    <span class="kw">if</span> <span class="ident">f</span> <span class="op">&gt;</span> <span class="ident">T</span>::<span class="ident">MAX_SIG</span> {
        <span class="kw">return</span> <span class="prelude-val">None</span>;
    }

    <span class="comment">// The fast path crucially depends on arithmetic being rounded to the correct number of bits</span>
    <span class="comment">// without any intermediate rounding. On x86 (without SSE or SSE2) this requires the precision</span>
    <span class="comment">// of the x87 FPU stack to be changed so that it directly rounds to 64/32 bit.</span>
    <span class="comment">// The `set_precision` function takes care of setting the precision on architectures which</span>
    <span class="comment">// require setting it by changing the global state (like the control word of the x87 FPU).</span>
    <span class="kw">let</span> <span class="ident">_cw</span> <span class="op">=</span> <span class="ident">fpu_precision</span>::<span class="ident">set_precision</span>::<span class="op">&lt;</span><span class="ident">T</span><span class="op">&gt;</span>();

    <span class="comment">// The case e &lt; 0 cannot be folded into the other branch. Negative powers result in</span>
    <span class="comment">// a repeating fractional part in binary, which are rounded, which causes real</span>
    <span class="comment">// (and occasionally quite significant!) errors in the final result.</span>
    <span class="kw">if</span> <span class="ident">e</span> <span class="op">&gt;=</span> <span class="number">0</span> {
        <span class="prelude-val">Some</span>(<span class="ident">T</span>::<span class="ident">from_int</span>(<span class="ident">f</span>) <span class="op">*</span> <span class="ident">T</span>::<span class="ident">short_fast_pow10</span>(<span class="ident">e</span> <span class="kw">as</span> <span class="ident">usize</span>))
    } <span class="kw">else</span> {
        <span class="prelude-val">Some</span>(<span class="ident">T</span>::<span class="ident">from_int</span>(<span class="ident">f</span>) <span class="op">/</span> <span class="ident">T</span>::<span class="ident">short_fast_pow10</span>(<span class="ident">e</span>.<span class="ident">abs</span>() <span class="kw">as</span> <span class="ident">usize</span>))
    }
}

<span class="doccomment">/// Algorithm Bellerophon is trivial code justified by non-trivial numeric analysis.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// It rounds ``f`` to a float with 64 bit significand and multiplies it by the best approximation</span>
<span class="doccomment">/// of `10^e` (in the same floating point format). This is often enough to get the correct result.</span>
<span class="doccomment">/// However, when the result is close to halfway between two adjacent (ordinary) floats, the</span>
<span class="doccomment">/// compound rounding error from multiplying two approximation means the result may be off by a</span>
<span class="doccomment">/// few bits. When this happens, the iterative Algorithm R fixes things up.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// The hand-wavy &quot;close to halfway&quot; is made precise by the numeric analysis in the paper.</span>
<span class="doccomment">/// In the words of Clinger:</span>
<span class="doccomment">///</span>
<span class="doccomment">/// &gt; Slop, expressed in units of the least significant bit, is an inclusive bound for the error</span>
<span class="doccomment">/// &gt; accumulated during the floating point calculation of the approximation to f * 10^e. (Slop is</span>
<span class="doccomment">/// &gt; not a bound for the true error, but bounds the difference between the approximation z and</span>
<span class="doccomment">/// &gt; the best possible approximation that uses p bits of significand.)</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">bellerophon</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">f</span>: <span class="kw-2">&amp;</span><span class="ident">Big</span>, <span class="ident">e</span>: <span class="ident">i16</span>) <span class="op">-&gt;</span> <span class="ident">T</span> {
    <span class="kw">let</span> <span class="ident">slop</span>;
    <span class="kw">if</span> <span class="ident">f</span> <span class="op">&lt;=</span> <span class="kw-2">&amp;</span><span class="ident">Big</span>::<span class="ident">from_u64</span>(<span class="ident">T</span>::<span class="ident">MAX_SIG</span>) {
        <span class="comment">// The cases abs(e) &lt; log5(2^N) are in fast_path()</span>
        <span class="ident">slop</span> <span class="op">=</span> <span class="kw">if</span> <span class="ident">e</span> <span class="op">&gt;=</span> <span class="number">0</span> { <span class="number">0</span> } <span class="kw">else</span> { <span class="number">3</span> };
    } <span class="kw">else</span> {
        <span class="ident">slop</span> <span class="op">=</span> <span class="kw">if</span> <span class="ident">e</span> <span class="op">&gt;=</span> <span class="number">0</span> { <span class="number">1</span> } <span class="kw">else</span> { <span class="number">4</span> };
    }
    <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> <span class="ident">rawfp</span>::<span class="ident">big_to_fp</span>(<span class="ident">f</span>).<span class="ident">mul</span>(<span class="kw-2">&amp;</span><span class="ident">power_of_ten</span>(<span class="ident">e</span>)).<span class="ident">normalize</span>();
    <span class="kw">let</span> <span class="ident">exp_p_n</span> <span class="op">=</span> <span class="number">1</span> <span class="op">&lt;&lt;</span> (<span class="ident">P</span> <span class="op">-</span> <span class="ident">T</span>::<span class="ident">SIG_BITS</span> <span class="kw">as</span> <span class="ident">u32</span>);
    <span class="kw">let</span> <span class="ident">lowbits</span>: <span class="ident">i64</span> <span class="op">=</span> (<span class="ident">z</span>.<span class="ident">f</span> <span class="op">%</span> <span class="ident">exp_p_n</span>) <span class="kw">as</span> <span class="ident">i64</span>;
    <span class="comment">// Is the slop large enough to make a difference when</span>
    <span class="comment">// rounding to n bits?</span>
    <span class="kw">if</span> (<span class="ident">lowbits</span> <span class="op">-</span> <span class="ident">exp_p_n</span> <span class="kw">as</span> <span class="ident">i64</span> <span class="op">/</span> <span class="number">2</span>).<span class="ident">abs</span>() <span class="op">&lt;=</span> <span class="ident">slop</span> {
        <span class="ident">algorithm_r</span>(<span class="ident">f</span>, <span class="ident">e</span>, <span class="ident">fp_to_float</span>(<span class="ident">z</span>))
    } <span class="kw">else</span> {
        <span class="ident">fp_to_float</span>(<span class="ident">z</span>)
    }
}

<span class="doccomment">/// An iterative algorithm that improves a floating point approximation of `f * 10^e`.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// Each iteration gets one unit in the last place closer, which of course takes terribly long to</span>
<span class="doccomment">/// converge if `z0` is even mildly off. Luckily, when used as fallback for Bellerophon, the</span>
<span class="doccomment">/// starting approximation is off by at most one ULP.</span>
<span class="kw">fn</span> <span class="ident">algorithm_r</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">f</span>: <span class="kw-2">&amp;</span><span class="ident">Big</span>, <span class="ident">e</span>: <span class="ident">i16</span>, <span class="ident">z0</span>: <span class="ident">T</span>) <span class="op">-&gt;</span> <span class="ident">T</span> {
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">z</span> <span class="op">=</span> <span class="ident">z0</span>;
    <span class="kw">loop</span> {
        <span class="kw">let</span> <span class="ident">raw</span> <span class="op">=</span> <span class="ident">z</span>.<span class="ident">unpack</span>();
        <span class="kw">let</span> (<span class="ident">m</span>, <span class="ident">k</span>) <span class="op">=</span> (<span class="ident">raw</span>.<span class="ident">sig</span>, <span class="ident">raw</span>.<span class="ident">k</span>);
        <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">x</span> <span class="op">=</span> <span class="ident">f</span>.<span class="ident">clone</span>();
        <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">y</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_u64</span>(<span class="ident">m</span>);

        <span class="comment">// Find positive integers `x`, `y` such that `x / y` is exactly `(f * 10^e) / (m * 2^k)`.</span>
        <span class="comment">// This not only avoids dealing with the signs of `e` and `k`, we also eliminate the</span>
        <span class="comment">// power of two common to `10^e` and `2^k` to make the numbers smaller.</span>
        <span class="ident">make_ratio</span>(<span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">x</span>, <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">y</span>, <span class="ident">e</span>, <span class="ident">k</span>);

        <span class="kw">let</span> <span class="ident">m_digits</span> <span class="op">=</span> [(<span class="ident">m</span> <span class="op">&amp;</span> <span class="number">0xFF_FF_FF_FF</span>) <span class="kw">as</span> <span class="ident">u32</span>, (<span class="ident">m</span> <span class="op">&gt;&gt;</span> <span class="number">32</span>) <span class="kw">as</span> <span class="ident">u32</span>];
        <span class="comment">// This is written a bit awkwardly because our bignums don&#39;t support</span>
        <span class="comment">// negative numbers, so we use the absolute value + sign information.</span>
        <span class="comment">// The multiplication with m_digits can&#39;t overflow. If `x` or `y` are large enough that</span>
        <span class="comment">// we need to worry about overflow, then they are also large enough that `make_ratio` has</span>
        <span class="comment">// reduced the fraction by a factor of 2^64 or more.</span>
        <span class="kw">let</span> (<span class="ident">d2</span>, <span class="ident">d_negative</span>) <span class="op">=</span> <span class="kw">if</span> <span class="ident">x</span> <span class="op">&gt;=</span> <span class="ident">y</span> {
            <span class="comment">// Don&#39;t need x any more, save a clone().</span>
            <span class="ident">x</span>.<span class="ident">sub</span>(<span class="kw-2">&amp;</span><span class="ident">y</span>).<span class="ident">mul_pow2</span>(<span class="number">1</span>).<span class="ident">mul_digits</span>(<span class="kw-2">&amp;</span><span class="ident">m_digits</span>);
            (<span class="ident">x</span>, <span class="bool-val">false</span>)
        } <span class="kw">else</span> {
            <span class="comment">// Still need y - make a copy.</span>
            <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">y</span> <span class="op">=</span> <span class="ident">y</span>.<span class="ident">clone</span>();
            <span class="ident">y</span>.<span class="ident">sub</span>(<span class="kw-2">&amp;</span><span class="ident">x</span>).<span class="ident">mul_pow2</span>(<span class="number">1</span>).<span class="ident">mul_digits</span>(<span class="kw-2">&amp;</span><span class="ident">m_digits</span>);
            (<span class="ident">y</span>, <span class="bool-val">true</span>)
        };

        <span class="kw">if</span> <span class="ident">d2</span> <span class="op">&lt;</span> <span class="ident">y</span> {
            <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">d2_double</span> <span class="op">=</span> <span class="ident">d2</span>;
            <span class="ident">d2_double</span>.<span class="ident">mul_pow2</span>(<span class="number">1</span>);
            <span class="kw">if</span> <span class="ident">m</span> <span class="op">==</span> <span class="ident">T</span>::<span class="ident">MIN_SIG</span> <span class="op">&amp;&amp;</span> <span class="ident">d_negative</span> <span class="op">&amp;&amp;</span> <span class="ident">d2_double</span> <span class="op">&gt;</span> <span class="ident">y</span> {
                <span class="ident">z</span> <span class="op">=</span> <span class="ident">prev_float</span>(<span class="ident">z</span>);
            } <span class="kw">else</span> {
                <span class="kw">return</span> <span class="ident">z</span>;
            }
        } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">d2</span> <span class="op">==</span> <span class="ident">y</span> {
            <span class="kw">if</span> <span class="ident">m</span> <span class="op">%</span> <span class="number">2</span> <span class="op">==</span> <span class="number">0</span> {
                <span class="kw">if</span> <span class="ident">m</span> <span class="op">==</span> <span class="ident">T</span>::<span class="ident">MIN_SIG</span> <span class="op">&amp;&amp;</span> <span class="ident">d_negative</span> {
                    <span class="ident">z</span> <span class="op">=</span> <span class="ident">prev_float</span>(<span class="ident">z</span>);
                } <span class="kw">else</span> {
                    <span class="kw">return</span> <span class="ident">z</span>;
                }
            } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">d_negative</span> {
                <span class="ident">z</span> <span class="op">=</span> <span class="ident">prev_float</span>(<span class="ident">z</span>);
            } <span class="kw">else</span> {
                <span class="ident">z</span> <span class="op">=</span> <span class="ident">next_float</span>(<span class="ident">z</span>);
            }
        } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">d_negative</span> {
            <span class="ident">z</span> <span class="op">=</span> <span class="ident">prev_float</span>(<span class="ident">z</span>);
        } <span class="kw">else</span> {
            <span class="ident">z</span> <span class="op">=</span> <span class="ident">next_float</span>(<span class="ident">z</span>);
        }
    }
}

<span class="doccomment">/// Given `x = f` and `y = m` where `f` represent input decimal digits as usual and `m` is the</span>
<span class="doccomment">/// significand of a floating point approximation, make the ratio `x / y` equal to</span>
<span class="doccomment">/// `(f * 10^e) / (m * 2^k)`, possibly reduced by a power of two both have in common.</span>
<span class="kw">fn</span> <span class="ident">make_ratio</span>(<span class="ident">x</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">Big</span>, <span class="ident">y</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">Big</span>, <span class="ident">e</span>: <span class="ident">i16</span>, <span class="ident">k</span>: <span class="ident">i16</span>) {
    <span class="kw">let</span> (<span class="ident">e_abs</span>, <span class="ident">k_abs</span>) <span class="op">=</span> (<span class="ident">e</span>.<span class="ident">abs</span>() <span class="kw">as</span> <span class="ident">usize</span>, <span class="ident">k</span>.<span class="ident">abs</span>() <span class="kw">as</span> <span class="ident">usize</span>);
    <span class="kw">if</span> <span class="ident">e</span> <span class="op">&gt;=</span> <span class="number">0</span> {
        <span class="kw">if</span> <span class="ident">k</span> <span class="op">&gt;=</span> <span class="number">0</span> {
            <span class="comment">// x = f * 10^e, y = m * 2^k, except that we reduce the fraction by some power of two.</span>
            <span class="kw">let</span> <span class="ident">common</span> <span class="op">=</span> <span class="ident">min</span>(<span class="ident">e_abs</span>, <span class="ident">k_abs</span>);
            <span class="ident">x</span>.<span class="ident">mul_pow5</span>(<span class="ident">e_abs</span>).<span class="ident">mul_pow2</span>(<span class="ident">e_abs</span> <span class="op">-</span> <span class="ident">common</span>);
            <span class="ident">y</span>.<span class="ident">mul_pow2</span>(<span class="ident">k_abs</span> <span class="op">-</span> <span class="ident">common</span>);
        } <span class="kw">else</span> {
            <span class="comment">// x = f * 10^e * 2^abs(k), y = m</span>
            <span class="comment">// This can&#39;t overflow because it requires positive `e` and negative `k`, which can</span>
            <span class="comment">// only happen for values extremely close to 1, which means that `e` and `k` will be</span>
            <span class="comment">// comparatively tiny.</span>
            <span class="ident">x</span>.<span class="ident">mul_pow5</span>(<span class="ident">e_abs</span>).<span class="ident">mul_pow2</span>(<span class="ident">e_abs</span> <span class="op">+</span> <span class="ident">k_abs</span>);
        }
    } <span class="kw">else</span> {
        <span class="kw">if</span> <span class="ident">k</span> <span class="op">&gt;=</span> <span class="number">0</span> {
            <span class="comment">// x = f, y = m * 10^abs(e) * 2^k</span>
            <span class="comment">// This can&#39;t overflow either, see above.</span>
            <span class="ident">y</span>.<span class="ident">mul_pow5</span>(<span class="ident">e_abs</span>).<span class="ident">mul_pow2</span>(<span class="ident">k_abs</span> <span class="op">+</span> <span class="ident">e_abs</span>);
        } <span class="kw">else</span> {
            <span class="comment">// x = f * 2^abs(k), y = m * 10^abs(e), again reducing by a common power of two.</span>
            <span class="kw">let</span> <span class="ident">common</span> <span class="op">=</span> <span class="ident">min</span>(<span class="ident">e_abs</span>, <span class="ident">k_abs</span>);
            <span class="ident">x</span>.<span class="ident">mul_pow2</span>(<span class="ident">k_abs</span> <span class="op">-</span> <span class="ident">common</span>);
            <span class="ident">y</span>.<span class="ident">mul_pow5</span>(<span class="ident">e_abs</span>).<span class="ident">mul_pow2</span>(<span class="ident">e_abs</span> <span class="op">-</span> <span class="ident">common</span>);
        }
    }
}

<span class="doccomment">/// Conceptually, Algorithm M is the simplest way to convert a decimal to a float.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// We form a ratio that is equal to `f * 10^e`, then throwing in powers of two until it gives</span>
<span class="doccomment">/// a valid float significand. The binary exponent `k` is the number of times we multiplied</span>
<span class="doccomment">/// numerator or denominator by two, i.e., at all times `f * 10^e` equals `(u / v) * 2^k`.</span>
<span class="doccomment">/// When we have found out significand, we only need to round by inspecting the remainder of the</span>
<span class="doccomment">/// division, which is done in helper functions further below.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// This algorithm is super slow, even with the optimization described in `quick_start()`.</span>
<span class="doccomment">/// However, it&#39;s the simplest of the algorithms to adapt for overflow, underflow, and subnormal</span>
<span class="doccomment">/// results. This implementation takes over when Bellerophon and Algorithm R are overwhelmed.</span>
<span class="doccomment">/// Detecting underflow and overflow is easy: The ratio still isn&#39;t an in-range significand,</span>
<span class="doccomment">/// yet the minimum/maximum exponent has been reached. In the case of overflow, we simply return</span>
<span class="doccomment">/// infinity.</span>
<span class="doccomment">///</span>
<span class="doccomment">/// Handling underflow and subnormals is trickier. One big problem is that, with the minimum</span>
<span class="doccomment">/// exponent, the ratio might still be too large for a significand. See underflow() for details.</span>
<span class="kw">pub</span> <span class="kw">fn</span> <span class="ident">algorithm_m</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">f</span>: <span class="kw-2">&amp;</span><span class="ident">Big</span>, <span class="ident">e</span>: <span class="ident">i16</span>) <span class="op">-&gt;</span> <span class="ident">T</span> {
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">u</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">v</span>;
    <span class="kw">let</span> <span class="ident">e_abs</span> <span class="op">=</span> <span class="ident">e</span>.<span class="ident">abs</span>() <span class="kw">as</span> <span class="ident">usize</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">k</span> <span class="op">=</span> <span class="number">0</span>;
    <span class="kw">if</span> <span class="ident">e</span> <span class="op">&lt;</span> <span class="number">0</span> {
        <span class="ident">u</span> <span class="op">=</span> <span class="ident">f</span>.<span class="ident">clone</span>();
        <span class="ident">v</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_small</span>(<span class="number">1</span>);
        <span class="ident">v</span>.<span class="ident">mul_pow5</span>(<span class="ident">e_abs</span>).<span class="ident">mul_pow2</span>(<span class="ident">e_abs</span>);
    } <span class="kw">else</span> {
        <span class="comment">// FIXME possible optimization: generalize big_to_fp so that we can do the equivalent of</span>
        <span class="comment">// fp_to_float(big_to_fp(u)) here, only without the double rounding.</span>
        <span class="ident">u</span> <span class="op">=</span> <span class="ident">f</span>.<span class="ident">clone</span>();
        <span class="ident">u</span>.<span class="ident">mul_pow5</span>(<span class="ident">e_abs</span>).<span class="ident">mul_pow2</span>(<span class="ident">e_abs</span>);
        <span class="ident">v</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_small</span>(<span class="number">1</span>);
    }
    <span class="ident">quick_start</span>::<span class="op">&lt;</span><span class="ident">T</span><span class="op">&gt;</span>(<span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">u</span>, <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">v</span>, <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">k</span>);
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">rem</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_small</span>(<span class="number">0</span>);
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">x</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_small</span>(<span class="number">0</span>);
    <span class="kw">let</span> <span class="ident">min_sig</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_u64</span>(<span class="ident">T</span>::<span class="ident">MIN_SIG</span>);
    <span class="kw">let</span> <span class="ident">max_sig</span> <span class="op">=</span> <span class="ident">Big</span>::<span class="ident">from_u64</span>(<span class="ident">T</span>::<span class="ident">MAX_SIG</span>);
    <span class="kw">loop</span> {
        <span class="ident">u</span>.<span class="ident">div_rem</span>(<span class="kw-2">&amp;</span><span class="ident">v</span>, <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">x</span>, <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">rem</span>);
        <span class="kw">if</span> <span class="ident">k</span> <span class="op">==</span> <span class="ident">T</span>::<span class="ident">MIN_EXP_INT</span> {
            <span class="comment">// We have to stop at the minimum exponent, if we wait until `k &lt; T::MIN_EXP_INT`,</span>
            <span class="comment">// then we&#39;d be off by a factor of two. Unfortunately this means we have to special-</span>
            <span class="comment">// case normal numbers with the minimum exponent.</span>
            <span class="comment">// FIXME find a more elegant formulation, but run the `tiny-pow10` test to make sure</span>
            <span class="comment">// that it&#39;s actually correct!</span>
            <span class="kw">if</span> <span class="ident">x</span> <span class="op">&gt;=</span> <span class="ident">min_sig</span> <span class="op">&amp;&amp;</span> <span class="ident">x</span> <span class="op">&lt;=</span> <span class="ident">max_sig</span> {
                <span class="kw">break</span>;
            }
            <span class="kw">return</span> <span class="ident">underflow</span>(<span class="ident">x</span>, <span class="ident">v</span>, <span class="ident">rem</span>);
        }
        <span class="kw">if</span> <span class="ident">k</span> <span class="op">&gt;</span> <span class="ident">T</span>::<span class="ident">MAX_EXP_INT</span> {
            <span class="kw">return</span> <span class="ident">T</span>::<span class="ident">INFINITY</span>;
        }
        <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">min_sig</span> {
            <span class="ident">u</span>.<span class="ident">mul_pow2</span>(<span class="number">1</span>);
            <span class="ident">k</span> <span class="op">-=</span> <span class="number">1</span>;
        } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">x</span> <span class="op">&gt;</span> <span class="ident">max_sig</span> {
            <span class="ident">v</span>.<span class="ident">mul_pow2</span>(<span class="number">1</span>);
            <span class="ident">k</span> <span class="op">+=</span> <span class="number">1</span>;
        } <span class="kw">else</span> {
            <span class="kw">break</span>;
        }
    }
    <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">num</span>::<span class="ident">to_u64</span>(<span class="kw-2">&amp;</span><span class="ident">x</span>);
    <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> <span class="ident">rawfp</span>::<span class="ident">encode_normal</span>(<span class="ident">Unpacked</span>::<span class="ident">new</span>(<span class="ident">q</span>, <span class="ident">k</span>));
    <span class="ident">round_by_remainder</span>(<span class="ident">v</span>, <span class="ident">rem</span>, <span class="ident">q</span>, <span class="ident">z</span>)
}

<span class="doccomment">/// Skip over most Algorithm M iterations by checking the bit length.</span>
<span class="kw">fn</span> <span class="ident">quick_start</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">u</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">Big</span>, <span class="ident">v</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">Big</span>, <span class="ident">k</span>: <span class="kw-2">&amp;</span><span class="kw-2">mut</span> <span class="ident">i16</span>) {
    <span class="comment">// The bit length is an estimate of the base two logarithm, and log(u / v) = log(u) - log(v).</span>
    <span class="comment">// The estimate is off by at most 1, but always an under-estimate, so the error on log(u)</span>
    <span class="comment">// and log(v) are of the same sign and cancel out (if both are large). Therefore the error</span>
    <span class="comment">// for log(u / v) is at most one as well.</span>
    <span class="comment">// The target ratio is one where u/v is in an in-range significand. Thus our termination</span>
    <span class="comment">// condition is log2(u / v) being the significand bits, plus/minus one.</span>
    <span class="comment">// FIXME Looking at the second bit could improve the estimate and avoid some more divisions.</span>
    <span class="kw">let</span> <span class="ident">target_ratio</span> <span class="op">=</span> <span class="ident">T</span>::<span class="ident">SIG_BITS</span> <span class="kw">as</span> <span class="ident">i16</span>;
    <span class="kw">let</span> <span class="ident">log2_u</span> <span class="op">=</span> <span class="ident">u</span>.<span class="ident">bit_length</span>() <span class="kw">as</span> <span class="ident">i16</span>;
    <span class="kw">let</span> <span class="ident">log2_v</span> <span class="op">=</span> <span class="ident">v</span>.<span class="ident">bit_length</span>() <span class="kw">as</span> <span class="ident">i16</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">u_shift</span>: <span class="ident">i16</span> <span class="op">=</span> <span class="number">0</span>;
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">v_shift</span>: <span class="ident">i16</span> <span class="op">=</span> <span class="number">0</span>;
    <span class="macro">assert</span><span class="macro">!</span>(<span class="kw-2">*</span><span class="ident">k</span> <span class="op">==</span> <span class="number">0</span>);
    <span class="kw">loop</span> {
        <span class="kw">if</span> <span class="kw-2">*</span><span class="ident">k</span> <span class="op">==</span> <span class="ident">T</span>::<span class="ident">MIN_EXP_INT</span> {
            <span class="comment">// Underflow or subnormal. Leave it to the main function.</span>
            <span class="kw">break</span>;
        }
        <span class="kw">if</span> <span class="kw-2">*</span><span class="ident">k</span> <span class="op">==</span> <span class="ident">T</span>::<span class="ident">MAX_EXP_INT</span> {
            <span class="comment">// Overflow. Leave it to the main function.</span>
            <span class="kw">break</span>;
        }
        <span class="kw">let</span> <span class="ident">log2_ratio</span> <span class="op">=</span> (<span class="ident">log2_u</span> <span class="op">+</span> <span class="ident">u_shift</span>) <span class="op">-</span> (<span class="ident">log2_v</span> <span class="op">+</span> <span class="ident">v_shift</span>);
        <span class="kw">if</span> <span class="ident">log2_ratio</span> <span class="op">&lt;</span> <span class="ident">target_ratio</span> <span class="op">-</span> <span class="number">1</span> {
            <span class="ident">u_shift</span> <span class="op">+=</span> <span class="number">1</span>;
            <span class="kw-2">*</span><span class="ident">k</span> <span class="op">-=</span> <span class="number">1</span>;
        } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">log2_ratio</span> <span class="op">&gt;</span> <span class="ident">target_ratio</span> <span class="op">+</span> <span class="number">1</span> {
            <span class="ident">v_shift</span> <span class="op">+=</span> <span class="number">1</span>;
            <span class="kw-2">*</span><span class="ident">k</span> <span class="op">+=</span> <span class="number">1</span>;
        } <span class="kw">else</span> {
            <span class="kw">break</span>;
        }
    }
    <span class="ident">u</span>.<span class="ident">mul_pow2</span>(<span class="ident">u_shift</span> <span class="kw">as</span> <span class="ident">usize</span>);
    <span class="ident">v</span>.<span class="ident">mul_pow2</span>(<span class="ident">v_shift</span> <span class="kw">as</span> <span class="ident">usize</span>);
}

<span class="kw">fn</span> <span class="ident">underflow</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">x</span>: <span class="ident">Big</span>, <span class="ident">v</span>: <span class="ident">Big</span>, <span class="ident">rem</span>: <span class="ident">Big</span>) <span class="op">-&gt;</span> <span class="ident">T</span> {
    <span class="kw">if</span> <span class="ident">x</span> <span class="op">&lt;</span> <span class="ident">Big</span>::<span class="ident">from_u64</span>(<span class="ident">T</span>::<span class="ident">MIN_SIG</span>) {
        <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">num</span>::<span class="ident">to_u64</span>(<span class="kw-2">&amp;</span><span class="ident">x</span>);
        <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> <span class="ident">rawfp</span>::<span class="ident">encode_subnormal</span>(<span class="ident">q</span>);
        <span class="kw">return</span> <span class="ident">round_by_remainder</span>(<span class="ident">v</span>, <span class="ident">rem</span>, <span class="ident">q</span>, <span class="ident">z</span>);
    }
    <span class="comment">// Ratio isn&#39;t an in-range significand with the minimum exponent, so we need to round off</span>
    <span class="comment">// excess bits and adjust the exponent accordingly. The real value now looks like this:</span>
    <span class="comment">//</span>
    <span class="comment">//        x        lsb</span>
    <span class="comment">// /--------------\/</span>
    <span class="comment">// 1010101010101010.10101010101010 * 2^k</span>
    <span class="comment">// \-----/\-------/ \------------/</span>
    <span class="comment">//    q     trunc.    (represented by rem)</span>
    <span class="comment">//</span>
    <span class="comment">// Therefore, when the rounded-off bits are != 0.5 ULP, they decide the rounding</span>
    <span class="comment">// on their own. When they are equal and the remainder is non-zero, the value still</span>
    <span class="comment">// needs to be rounded up. Only when the rounded off bits are 1/2 and the remainder</span>
    <span class="comment">// is zero, we have a half-to-even situation.</span>
    <span class="kw">let</span> <span class="ident">bits</span> <span class="op">=</span> <span class="ident">x</span>.<span class="ident">bit_length</span>();
    <span class="kw">let</span> <span class="ident">lsb</span> <span class="op">=</span> <span class="ident">bits</span> <span class="op">-</span> <span class="ident">T</span>::<span class="ident">SIG_BITS</span> <span class="kw">as</span> <span class="ident">usize</span>;
    <span class="kw">let</span> <span class="ident">q</span> <span class="op">=</span> <span class="ident">num</span>::<span class="ident">get_bits</span>(<span class="kw-2">&amp;</span><span class="ident">x</span>, <span class="ident">lsb</span>, <span class="ident">bits</span>);
    <span class="kw">let</span> <span class="ident">k</span> <span class="op">=</span> <span class="ident">T</span>::<span class="ident">MIN_EXP_INT</span> <span class="op">+</span> <span class="ident">lsb</span> <span class="kw">as</span> <span class="ident">i16</span>;
    <span class="kw">let</span> <span class="ident">z</span> <span class="op">=</span> <span class="ident">rawfp</span>::<span class="ident">encode_normal</span>(<span class="ident">Unpacked</span>::<span class="ident">new</span>(<span class="ident">q</span>, <span class="ident">k</span>));
    <span class="kw">let</span> <span class="ident">q_even</span> <span class="op">=</span> <span class="ident">q</span> <span class="op">%</span> <span class="number">2</span> <span class="op">==</span> <span class="number">0</span>;
    <span class="kw">match</span> <span class="ident">num</span>::<span class="ident">compare_with_half_ulp</span>(<span class="kw-2">&amp;</span><span class="ident">x</span>, <span class="ident">lsb</span>) {
        <span class="ident">Greater</span> <span class="op">=&gt;</span> <span class="ident">next_float</span>(<span class="ident">z</span>),
        <span class="ident">Less</span> <span class="op">=&gt;</span> <span class="ident">z</span>,
        <span class="ident">Equal</span> <span class="kw">if</span> <span class="ident">rem</span>.<span class="ident">is_zero</span>() <span class="op">&amp;&amp;</span> <span class="ident">q_even</span> <span class="op">=&gt;</span> <span class="ident">z</span>,
        <span class="ident">Equal</span> <span class="op">=&gt;</span> <span class="ident">next_float</span>(<span class="ident">z</span>),
    }
}

<span class="doccomment">/// Ordinary round-to-even, obfuscated by having to round based on the remainder of a division.</span>
<span class="kw">fn</span> <span class="ident">round_by_remainder</span><span class="op">&lt;</span><span class="ident">T</span>: <span class="ident">RawFloat</span><span class="op">&gt;</span>(<span class="ident">v</span>: <span class="ident">Big</span>, <span class="ident">r</span>: <span class="ident">Big</span>, <span class="ident">q</span>: <span class="ident">u64</span>, <span class="ident">z</span>: <span class="ident">T</span>) <span class="op">-&gt;</span> <span class="ident">T</span> {
    <span class="kw">let</span> <span class="kw-2">mut</span> <span class="ident">v_minus_r</span> <span class="op">=</span> <span class="ident">v</span>;
    <span class="ident">v_minus_r</span>.<span class="ident">sub</span>(<span class="kw-2">&amp;</span><span class="ident">r</span>);
    <span class="kw">if</span> <span class="ident">r</span> <span class="op">&lt;</span> <span class="ident">v_minus_r</span> {
        <span class="ident">z</span>
    } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">r</span> <span class="op">&gt;</span> <span class="ident">v_minus_r</span> {
        <span class="ident">next_float</span>(<span class="ident">z</span>)
    } <span class="kw">else</span> <span class="kw">if</span> <span class="ident">q</span> <span class="op">%</span> <span class="number">2</span> <span class="op">==</span> <span class="number">0</span> {
        <span class="ident">z</span>
    } <span class="kw">else</span> {
        <span class="ident">next_float</span>(<span class="ident">z</span>)
    }
}
</pre>
</section><section id="search" class="content hidden"></section><section class="footer"></section><aside id="help" class="hidden"><div><h1 class="hidden">Help</h1><div class="shortcuts"><h2>Keyboard Shortcuts</h2><dl><dt><kbd>?</kbd></dt><dd>Show this help dialog</dd><dt><kbd>S</kbd></dt><dd>Focus the search field</dd><dt><kbd>↑</kbd></dt><dd>Move up in search results</dd><dt><kbd>↓</kbd></dt><dd>Move down in search results</dd><dt><kbd>↹</kbd></dt><dd>Switch tab</dd><dt><kbd>&#9166;</kbd></dt><dd>Go to active search result</dd><dt><kbd>+</kbd></dt><dd>Expand all sections</dd><dt><kbd>-</kbd></dt><dd>Collapse all sections</dd></dl></div><div class="infos"><h2>Search Tricks</h2><p>Prefix searches with a type followed by a colon (e.g. <code>fn:</code>) to restrict the search to a given type.</p><p>Accepted types are: <code>fn</code>, <code>mod</code>, <code>struct</code>, <code>enum</code>, <code>trait</code>, <code>type</code>, <code>macro</code>, and <code>const</code>.</p><p>Search functions by type signature (e.g. <code>vec -> usize</code> or <code>* -> vec</code>)</p><p>Search multiple things at once by splitting your query with comma (e.g. <code>str,u8</code> or <code>String,struct:Vec,test</code>)</p></div></div></aside><script>window.rootPath = "../../../../";window.currentCrate = "core";</script><script src="../../../../aliases.js"></script><script src="../../../../main.js"></script><script defer src="../../../../search-index.js"></script></body></html>